
computer 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

optimization effort. Multicore processors based on coher-
ent hardware-managed caches provide the abstraction
of a single shared address space. This abstraction frees
programmers from having to explicitly manage data as
it moves through the memory hierarchy and between
cores. The hardware automatically synchronizes data
in main memory and across the caches in each core so
that all cores have a consistent view of shared memory.
In contrast, software-managed local memories introduce
disjoint address spaces that programmers are responsible
for keeping consistent. Because programmers must explic-
itly manage data locality, they can decide when to place
data in local memories, what data to replace, and what the
data layout is in local memories, which can differ from the
layout of data in off-chip DRAM.5

We used the Cell Broadband Engine processor as an
experimental testbed to analyze support for expressing
parallelism and locality in programming models for mul-
tiprocessors with EMM hierarchies. We implemented two
applications using three programming models of vary-
ing complexity to explore abstractions for specifying the
working sets of parallel tasks, controlling task granularity,
and scheduling data transfers to and from local memo-
ries. The two scientific parallel applications, PBPI6 and
Fixedgrid,7 stress both computational power and memory
bandwidth.

M
ulticore processors with explicitly managed
memory (EMM) hierarchies originated in
the domain of games and graphics1,2 and
are now emerging as general-purpose
high-end computing platforms. More

recently, processor vendors for mainstream computing
markets such as Intel and AMD have introduced simi-
lar designs.3 All of these processors have data-parallel
components as accelerators. This acceleration is achieved
through multiple scalar or single-instruction, multiple-
data (SIMD) cores, high on-chip bandwidth, and explicit
data transfers between fast local memories and external
dynamic RAM (DRAM). Explicit data transfers enable pro-
grammers to use optimal caching policies and multiple
streaming data buffers that allow overlapping computa-
tion with data transfer latency.4

Managing data locality in EMM multicore processors
requires tradeoffs in performance, code complexity, and

A study of two applications programmed
using three models of varying complexity
reveals that implicit management of local-
ity can produce code with performance
comparable to code generated from explic-
it management of locality.

Scott Schneider and Jae-Seung Yeom, Virginia Tech

Dimitrios S. Nikolopoulos, FORTH-ICS and University of Crete

PrograMMing
MultiProcessors
with exPlicitly
Managed MeMory
hierarchies

43DecemBer 2009

The limited amount of data that can fit into the local
store requires streaming for good performance. Program-
mers must be able to anticipate what data they will need
for future computations and initiate DMAs for this data
while the other data is in use for computation. Over-
lapping computation and communication can hide the
latency associated with DMAs, a necessity for sustained
performance.

Strided access
A single DMA only transfers contiguous data. The Cell

has no architectural support for strided access to main
memory, which is required for accessing, say, the col-
umns in a matrix that is stored in row-major format.
To best transfer noncontiguous data to and from main
memory, programmers must construct DMA lists. Each
entry in a DMA list specifies a separate DMA, and pro-
grammers must ensure that the memory address for
each subsequent entry in the list adheres to the stride
they want.

Data alignment
All DMAs of less than 16 bytes must be naturally

aligned in both main memory and in the SPE’s local
store—that is, transfers of 1, 2, 4, and 8 bytes must be
aligned on a 1-, 2-, 4-, or 8-byte boundary, respectively.
Transfers larger than or equal to 16 bytes must be aligned
on a 16-byte boundary, but for best performance data
should be aligned on a cache line (128 bytes).

In comparing implicit versus explicit pro-
gramming models for managing locality,
we found that programming models with
implicit locality management via compiler
and runtime support can increase program-
mer productivity: Programmers write less
code, maintain a high-level view of local-
ity, and rely more on the compiler and the
runtime environment for parallelism and
locality management. However, explicit
management of locality is often necessary
for performance optimization, and the
explicit control of private address spaces
enforced in some programming models
helps in this direction.

Cell Programming ChallengeS
Figure 1 shows the Cell processor’s archi-

tecture. The power processing element (PPE)
is a traditional PowerPC processor with hard-
ware-managed caches and vector processing
extensions. The eight synergistic processing
elements (SPEs) are 128-bit vector processors
with software managed caches. The SPEs can
communicate with one another over high-bandwidth
buses, and the PPE and SPEs use the same buses to
communicate with the memory interface controller.
Compared to programming for homogeneous multicore
processors and shared-memory symmetric multi-
processors (SMPs), programming for the Cell presents
several unique challenges.

local memory spaces
Effective use of the Cell requires offloading as much

computation as possible to the SPEs. The difficulty of this
requirement is that the SPEs are divorced from the normal
memory hierarchy. Each SPE has a local static RAM (SRAM)
store of 256 Kbytes, and this is the only memory it can
directly address. Programmers must transfer data from
main memory explicitly through direct memory accesses
(DMAs). Consequently, they must know the memory access
patterns in their application and move data in and out as
needed.

Small local store
The 256-Kbyte local store associated with each SPE

contains all of the code and all of the data the SPE uses.
Consequently, there is a tradeoff: The more code that is
loaded into an SPE, the less data it can operate on. Because
this space also contains stack frames, recursive functions
are more limited in their depth of recursion than in an
architecture with a conventional hardware-managed
memory hierarchy.

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

MFC

L2L1PPU

O�-chip to main memory

PPE

SPE

Memory
interface
controller

Element
interconnect bus

Figure 1. Cell processor architecture. The power processing element
(PPE) is a traditional PowerPC core with hardware-managed caches and
vector processing extensions. The synergistic processing elements (SPEs)
have a programmer-controlled local store (LS) that communicates with
the memory interface controller through the memory flow controller
(MFC).

COVER FE ATURE

computer 44

Cellgen
Cellgen implements a programming model

similar to OpenMP.9 Figure 2a shows an exam-
ple of Cellgen code taken from PBPI.

Programmers identify data-parallel sections
of their code, then annotate these sections to
mark them for parallel execution and data han-
dling. This model provides the abstraction of a
shared-memory architecture and an indirect
abstraction of data locality. While the parallel
sections are annotated with their datasets, the
code inside these regions is not; it is written
in the same way it would be for a sequential
program.

The programmer annotates the data as pri-
vate or shared, using the same keywords as in
OpenMP. Private variables follow OpenMP se-
mantics: They are copied into local stores using
DMAs, and each SPE gets a local copy of the
variable. Shared variables are further classified
using reference analysis as in, out, or I/O vari-
ables. This classification departs from OpenMP
semantics and serves as the main vehicle for
managing locality in the Cell. In data needs
streaming into the SPE’s local store, out data
needs streaming out of local stores, and I/O data
needs streaming both in and out of local stores.
Classification is transparent to the programmer
and internal to the compiler. The Cellgen com-
piler and runtime system manages locality by
triggering and dynamically scheduling the asso-
ciated data transfers. Note that the abstraction
of shared memory is not implemented on top of
a coherent software cache.10 The compiler and
runtime system transparently manages coher-
ence and locality.

Streaming data is paramount for two rea-
sons: The local stores are small, so they can
only contain a fraction of parallel task working
sets, and the DMA latency is significant. Over-
lapping DMAs with computation is necessary
to achieve high performance. Data classified
by the compiler as in or out is streamed using
double buffering, while I/O data is streamed
using triple buffering. The number of states
a variable can be in determines the depth of
buffering. In data can be either simultaneously
streaming in or computing; out data can be

either simultaneously computing or streaming out; I/O
data can be simultaneously streaming in, computing, or
streaming out. The Cellgen compiler creates a buffer for
each of these states. The goal is to maximize computation/
DMA overlap by having data in two (in and out) or three
(I/O) states simultaneously.

Programming moDelS
Our study implemented two applications using two

high-level programming models, Cellgen and Sequoia.8
We contrasted these models with programming for the
Cell directly using the IBM Software Development Toolkit
(SDK) 3.0.

#pragma cell reduction(+: double | = lnL)
 private(double* freq = model->daStateFreqs,
 int N4 = N / 4)
 shared(double* sroot = tree->root->siteLike,
 int* weight = g_ds.compressedWeight.v)
{
 int i;
 for (i = 0; i < N4; i++) {
 int j = i * 4;
 double temp;
 temp = sroot[j]*freq[0] + sroot[j+1]*freq[1] +
 sroot[j+2]*freq[2] + sroot[j+3]*freq[3];
 temp = log(temp);
 | += weight[i] * temp;
 }
}

(a)

void task<leaf> Sum::Leaf(in double A[L],
 inout double B[L])
{
 B[0] += A[0];
}

void task<inner> Likelihood::Inner(in double sroot[N],
 in double freq[M],in int weight[P], out double lnL[L])
{
 tunable T;
 mapreduce(unsigned int i = 0 : (N+T-1)/T) {
 Likelihood(sroot[i*T;T], freq[0;3],
 weight[i*T/4;T/4], reducearg<lnL,Sum>);
 }
}

void task<leaf> Likelihood::Leaf(in double sroot[N],
 in double freq[M], in int weight[P],
 inout double lnL[L])
{
 unsigned int i,j;
 double temp;

 for (i = 0; i < P; i++) {
 j = i * 4;
 temp = sroot[j] * freq[0] + sroot[j+1] * freq[1] +
 sroot[j+2] * freq[2] + sroot[j+3] * freq[3];
 temp = log(temp);
 lnL[0] += weight[i] * temp;
 }
}

(b)

Figure 2. Two examples of likelihood calculation code in PBPI:
(a) Cellgen and (b) Sequoia.

45DecemBer 2009

identify and schedule all data transfers. Further, program-
mers are solely responsible for synchronizing threads
running on different cores, maintaining data coherency,
aligning data, and setting up and sizing buffers to achieve
computation/communication overlap. However, hand-
tuned parallelization also has well-known advantages:
Programmers with insight into the parallel algorithm and
the Cell architecture can maximize locality, eliminate un-
necessary data transfers, and optimally schedule data and
computation on cores.

aPPliCationS
For our analysis we used two scientific applications,

Fixedgrid and PBPI.

Fixedgrid
Fixedgrid is an atmospheric modeling application that

describes chemical transport via third-order upwind-bi-
ased advection discretization and second-order diffusion
discretization.

To calculate mass flux in a 2D domain, Fixedgrid must
calculate a two-component wind vector, horizontal dif-
fusion tensor, and concentrations for every species of
interest. In a domain of N × M, the calculation’s com-
plexity is O(NM). To determine ozone concentrations in
a 600 × 600 domain as in our experiments, Fixedgrid
calculates approximately 25,920,000 double-precision
values (24.7 Mbytes)—1,080,000 (8.24 Mbytes) at each
time step. These calculations access noncontiguous data,
which requires special handling on the SPEs in the form
of DMA lists. Reordering the data on the PPE so that the
SPE can access contiguous data is possible but hinders
performance significantly.

PBPi
PBPI is a parallel implementation of the Bayesian phylo-

genetic inference method, which constructs phylogenetic
trees using a Markov-chain Monte-Carlo sampling method.
On the Cell, calculation of the likelihood values (as shown
in Figure 2) for each generation is distributed among all
SPEs. Where N is the size of the data used in all calcula-
tions, all offloaded algorithms have complexity O(N).

Our experiments used a dataset of 107 taxa with 19,989
nucleotides for a tree. Three computational loops are
called for a total of 324,071 times and account for most of
the program’s execution time. The first loop accounts for

SPEs operate on independent loop iterations in parallel,
as scheduled by Cellgen. It is the programmer’s responsibil-
ity to ensure that loop iterations are in fact independent,
which is also the case in OpenMP.

Sequoia
The second class of programming models that we con-

sidered expresses parallelism through explicit task and
data subdivision. A representative of this model is Sequoia,
in which programmers construct trees of dependent tasks,
with the inner tasks calling tasks further down the tree.
Final computation occurs in leaf tasks. At each level, Se-
quoia decomposes the data and copies it to the child tasks
as specified, which enforces the model that each task has a
private address space. Figure 2b repeats the code example
of Figure 2a using Sequoia.

Sequoia strictly enforces locality because tasks can only
reference local data. In this manner, there is a direct map-
ping of tasks to the Cell architecture in which the SPE local
storage is divorced from the memory hierarchy. By provid-
ing a programming model in which tasks operate on local
data, and providing abstractions to subdivide data and pass
it on to subtasks, Sequoia can abstract away the underlying
architecture. Programmers explicitly define data and com-
putation subdivision through an architecture-independent
notation. Using these definitions, the Sequoia compiler
generates code for data subdivision and transfer for the
specific architecture.

Comparing the two examples in Figure 2 shows that the
same computation takes significantly less code to express
using the Cellgen model. However, the current Cellgen
model is designed for data-parallel computations. While
programming with Sequoia takes more code, it provides
a more expressive, general language. The tradeoff is that
programming models with implicit locality management
are more concise, but explicit models can solve a broader
class of problems.

Cell SDK
Cell SDK exposes Cell architectural details to program-

mers. It provides libraries for low-level, Pthread-style
thread-based parallelization, and sets of DMA commands
based on a get/put interface for managing data transfers.

Programming in Cell SDK is analogous to, if not harder
than, programming with the message passing interface
(MPI) or Pthreads on a typical cluster or multiprocessor.
Cell SDK programmers must parallelize their program
explicitly with threads, implement application-specific
scheduling loops in each thread, and manually schedule
all data transfers. Hence, programmers need a deep un-
derstanding of both thread-level parallelization and the
Cell hardware.

While programming models can transparently manage
data transfers, Cell SDK requires programmers to explicitly

Programming models with implicit
locality management are more
concise, but explicit models can
solve a broader class of problems.

COVER FE ATURE

computer 46

Fixedgrid
Fixedgrid has two types of computational

kernels: row and column discretization. The
former requires row data from a contiguous
region of memory, and the latter requires
column data from a noncontiguous region
of memory. For each time-step iteration, the
application calls the former twice as much
as the latter. The sequential implementa-
tion maintains a transposed copy of each
matrix. The application copies the values
of each transposed matrix as a whole from
the original matrix before the column dis-
cretization kernel. After the computation,
it copies the values back as a whole to the
original matrix.

Fixedgrid’s SDK3 implementations
use DMA lists to transfer columns of data
from matrices. DMA lists are the only
mechanism that Cell provides to perform
scatter/gather operations. Because DMA
lists perform best when each list entry is
at least 16 bytes, the SDK3 implementa-
tion transfers two columns at once. In the
SIMD implementation, vector operations
simultaneously work on the interleaved
columns. Unlike the other Fixedgrid im-
plementations, the SDK3 implementation
does not require column data to be reor-
dered on the PPE or SPE.

The Cellgen and Sequoia versions do not
support array-column accesses. Those implementations
instead rearrange noncontiguous data by performing array
transpositions on the PPE. Transposes introduce copying
overhead on the PPE, as Figure 3a shows.

Overall, we found that the lack of support for automatic
generation of DMA scatter/gather operations is the key
reason for the performance gap between the high-level
programming models and the hand-tuned implementa-
tion of Fixedgrid.

PBPi
Applications with a fine granularity of parallelism are

sensitive to the size and frequency of DMAs between the
SPE and main memory. Because PBPI is such an applica-
tion, we experimented with different buffer sizes, as Figure
4a shows.

The major factors that influence performance in
all three cases are the computational kernel, which is
either manually written or generated for the SPE; the
overhead of DMA-related operations; SPE overheads
imposed by the programming model runtime; and the
overhead of signaling between PPE and SPE, as Figure
4b shows.

88 percent of the calls and requires 1.2 Mbytes to com-
pute a result of 0.6 Mbytes; the second loop accounts for 6
percent of the calls and requires 1.8 Mbytes to compute a
result of 0.6 Mbytes; and the third loop also accounts for
6 percent of the calls and requires 0.6 Mbytes to compute
a result of 8 bytes.

PerFormanCe analySiS
We compared the performance of each implementation

of both applications, as shown in Figures 3 and 4. The ex-
perimental environment was a Sony PlayStation 3 running
Linux with a 2.6.24 kernel and Cell SDK 3.0. On a PS3 run-
ning Linux, only six SPEs are available to user-land code.
Each data point represents the best of 40 runs; we found
this more reproducible and representative than the average.

The original SDK3 implementations have vectorized
kernels. Because both Cellgen and Sequoia are primarily
concerned with locality management, they do not produce
SIMD code. However, autovectorization is not precluded
by design or engineering considerations.11 To control for
vectorization, we compared the Cellgen and Sequoia im-
plementations against SDK3 implementations with and
without SIMD kernels.

(a)

(b)

0 50 100 150 200 250

Sequential

Cellgen

Sequoia

SDK3

SDK3−SIMD

Im
ple

m
en

ta
tio

ns

Time (sec)

Time (sec)
0 20 40 60 80 100 120 140 160 180 200

Cellgen

Sequoia

SDK3

SDK3−SIMD

Im
ple

m
en

ta
tio

ns

SPE kernel row
SPE kernel col
Array copy row
Array copy col
DMA wait
DMA prepare
Barrier

PPE kernel row
PPE kernel col
Array copy row
Array copy col
PPE work

Figure 3. Fixedgrid implementation performance. (a) PPE timing profile.
“PPE kernel” measures the time to complete each offloaded function.
“Array copy” is the time spent on copying arrays from main memory for
each discretization function. “PPE work” includes array initialization and
file I/O time. (b) SPE timing profile. “SPE kernel” is the time spent on core
computation excluding DMA and array copying overheads. “Array copy”
is the time spent on copying arrays to SPE local store. “DMA wait” is data
transfer time not overlapped with computation in addition to the time for
checking for DMA completion. “DMA prepare” is the time to prepare DMA
addresses and lists along with the time to queue DMA commands.

47DecemBer 2009

o
ur study revealed that implicit management of
locality can produce code with performance
comparable to code generated from explicit
management of locality. Generating such
code requires adequate compiler and runtime

support, but it also reduces the programming effort as
measured by lines of code.

Cellgen, a programming model that uses private/
shared data classification clauses as the sole mechanism
for managing locality, demonstrates this point. The com-
piler and runtime system can be extended to integrate
more scheduling algorithms—such as dynamic, inter-
leaved, or work stealing—to further the programmer’s
task in managing granularity and scheduling. Neverthe-
less, tuning of data transfers by hand is still necessary
for optimization of specific data access patterns, and
models for which the programmer explicitly manages
locality help in this regard.

As expected, we found that programming models are
sensitive to data transfer overheads imposed by the imple-
mentation of their abstractions. The implementations need
to mask both overheads incurred by abstractions and the

Vectorizing the computational kernel
in the SDK3 implementation of PBPI im-
proves performance by 20 percent. The
computational kernel is the only significant
difference between the SDK3 and Cellgen
implementations; the communication over-
heads are similar. Cellgen’s computational
kernel in PBPI is faster than Sequoia’s be-
cause Sequoia relies on a compiler-generated
data structure for generalized array access
and incurs dereferencing overhead on each
access.

Overlapping DMA latency and compu-
tation is important for performance with
applications like PBPI. The best overlap is
achieved with different buffer sizes in the
three implementations. The DMA wait over-
head is minimal when the buffer size is 2
Kbytes for the SDK3implementation, while
the overhead is minimal at 4 Kbytes for Cell-
gen and 8 Kbytes for Sequoia. This difference
occurs because the programming models
provide different abstractions for accessing
arrays with their own associated overheads.
Hence, the costs of their computational ker-
nels and data transfers are different. Optimal
performance is achieved when the sum of
the computation costs and all related data
transfer overheads is minimal.

In the SDK3 version of PBPI, the epi-
logue—which includes the computation and
communication for the final iterations that
cannot be unrolled—is inefficient: One DMA is issued for
each iteration. In Cellgen and Sequoia, one DMA is issued
for the entire remainder of the data. This inefficiency ex-
plains why the SDK3 implementation performs worst with
the largest buffer size.

Sequoia has additional overheads on the SPE including
barriers, reductions, and extra copies of scalar variables,
which are artifacts of the Sequoia compilation process.
Such overheads become noticeable when there is a large
number of offloaded function calls. There are 324,071
offloaded function calls in a PBPI run, while there are only
2,592 in a Fixedgrid run.

At the end of a leaf task, Sequoia sometimes requires
the SPEs to synchronize at a barrier. In contrast, Cellgen
does not require such a barrier among SPEs. Instead, each
SPE waits until all outstanding DMAs have completed and
then sets a status value in its local store to indicate com-
pletion. The PPE polls these values from each SPE directly,
waiting for all SPEs to complete. Cellgen relies on a similar
method to collect the result from SPEs during reduction
operations, while Sequoia relies on DMAs and barriers
among SPEs.

Figure 4. PBPI implementation performance using six SPEs. (a) Total
execution time as a function of DMA buffer size. (b) Comparison of the best
cases from each implementation. “SPE kernel” accounts for the time to run
hand-coded or generated SPE kernel. “DMA wait” is the DMA data transfer
cost that is not overlapped with computation in addition to the time for
checking the completion of DMA commands. “SPE overheads” accounts
for DMA preparation, barriers, and other programming-model-specific
overheads, which vary depending on their implementations. “Signaling”
accounts for overhead from signaling between PPE and SPE.

COVER FE ATURE

computer 48

 4. T. Chen et al., “Optimizing the Use of Static Buffers for
DMA on a CELL Chip,” Proc. 19th Int’l Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC 06),
LNCS 4382, Springer, 2007, pp. 314-329.

 5. A.M. Aji et al., “Cell-SWat: Modeling and Scheduling Wave-
front Computations on the Cell Broadband Engine,” Proc.
5th Conf. Computing Frontiers (CF 08), ACM Press, 2008,
pp. 13-22.

 6. X. Feng, K.W. Cameron, and D.A. Buell, “PBPI: A High
Performance Implementation of Bayesian Phylogenetic
Inference,” article no. 75, Proc. 2006 ACM/IEEE Conf. Su-
percomputing (SC 06), ACM Press, 2006.

 7. J.C. Linford and A. Sandu, “Optimizing Large Scale Chemi-
cal Transport Models for Multicore Platforms,” Proc. 2008
Spring Simulation Multiconference (SpringSim 08), Society
for Computer Simulation Int’l, 2008, pp. 369-376.

 8. K. Fatahalian et al., “Sequoia: Programming the Memory
Hierarchy,” article no. 83, Proc. 2006 ACM/IEEE Conf. Su-
percomputing (SC 06), ACM Press, 2006.

 9. OpenMP Architecture Review Board, “OpenMP Applica-
tion Program Interface, v. 3.0,” May 2008; www.openmp.
org/mp-documents/spec30.pdf.

 10. J. Balart et al., “A Novel Asynchronous Software Cache
Implementation for the Cell-BE Processor,” Proc. 20th Int’l
Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC 07), LNCS 5234, Springer, 2007, pp. 125-140.

 11. D. Nuzman, I. Rosen, and A. Zaks, “Auto-Vectorization of
Interleaved Data for SIMD,” ACM SIGPLAN Notices, June
2006, pp. 132-143.

Scott Schneider is a PhD candidate in the Computer Science
Department at Virginia Tech and a member of the Parallel
Emerging Architecture Research Laboratory (PEARL). His
research interests include high-performance computing,
systems, and programming languages. Schneider received
an MS in computer science from The College of William and
Mary. He is a member of the ACM and the IEEE. Contact
him at scschnei@cs.vt.edu.

Jae-Seung Yeom is a PhD candidate in the Computer Sci-
ence Department at Virginia Tech and a member of PEARL.
His research interests include high-performance comput-
ing, intelligent systems, and information security. Yeom
received an MS in information networking from Carnegie
Mellon University. He is a member of the IEEE ComSoc
Communications and Information Security Technical Com-
mittee. Contact him at jyeom@cs.vt.edu.

Dimitrios S. Nikolopoulos is an associate professor of com-
puter science at the University of Crete and a researcher at
the Institute of Computer Science (ICS) of the Foundation
for Research and Technology—Hellas (FORTH). His research
interests include software, hardware, and tools for scalable
and energy-efficient parallel computation. Nikolopoulos re-
ceived a PhD in computer engineering from the University
of Patras. He is a member of the ACM and the IEEE. Contact
him at dsn@ics.for th.gr.

actual data transfer overheads with proper scheduling and
data distribution.

acknowledgments
This research was supported by grants from the NSF
(CCR-0346867, CCF-0715051, CNS-0521381, CNS-0720750,
CNS-0720673), the US Department of Energy (DE-FG02-
06ER25751, DE-FG02-05ER25689), IBM (VTF-874197) and the
European Commission (SARC-IP-27648, MCF-IRG-224759).

references
 1. T. Chen et al., “Cell Broadband Engine and Its First Im-

plementation—A Performance View,” IBM J. Research and
Development, Sept. 2007, pp. 559-572.

 2. J.D. Owens et al., “GPU Computing,” Proc. IEEE, May 2008,
pp. 879-899.

 3. P.H. Wang et al., “EXOCHI: Architecture and Program-
ming Environment for a Heterogeneous Multi-core
Multithreaded System,” Proc. 2007 ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI
07), ACM Press, 2007, pp. 156-166.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org

