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ABSTRACT
We present a case study parallelizing streaming aggregation on
three different parallel hardware architectures. Aggregation is a
performance-critical operation for data summarization in stream
computing, and is commonly found in sense-and-respond applica-
tions. Currently available commodity parallel hardware provides
promise as accelerators for streaming aggregation. However, how
streaming aggregation can map to the different parallel architec-
tures is still an open question. Streaming aggregation is obviously
data parallel, but in practice its performance relies more on effi-
cient data movement than computation, as we will demonstrate.
Furthermore, we used workloads such as stock market data, which
introduces unique data distribution problems. The three parallel
architectures we use in our study are an Intel Core 2 Quad pro-
cessor, an Nvidia GTX 285 GPU and the IBM PowerXCell 8i,
an enhanced version of the Cell Broadband Engine architecture.
Our implementations use OpenMP, CUDA and Cellgen (a com-
piler for OpenMP-like support on Cell) respectively. We find that
the Cell’s programmable local storage, and its low latency, high
bandwidth access to main memory are best suited for paralleliz-
ing streaming aggregation. GPUs in the future can overcome the
latency and bandwidth limitations by being fully integrated in the
system’s memory hierarchy. In order to attain good performance on
existing parallel architectures, we find that developers must charac-
terize their problem in terms of communication versus computation
costs; memory access patterns, including assessing whether their
algorithms reuse data; and the granularity of data access patterns.

1. INTRODUCTION
Streaming aggregation is a performance-critical operation in the

emerging area of large-scale, distributed stream computing. It is
a required operation for any streaming computation that requires
data summarization. Further, its salient characteristics—heavy re-
liance on data transfers, relatively low computation per byte—are
similar to other fundamental operations found in stream computing.
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Hence, accelerating streaming aggregation is an important problem
for those that develop and deploy streaming applications and mid-
dleware.

In order to attain good performance with an accelerator, devel-
opers must first understand how their problem maps to a given ar-
chitecture. Industry efforts such as OpenCL [17] try to extract a
common interface for different multicore architectures. A single in-
terface helps developers because they and their tools can target that
interface instead of the disparate architectures available to them.
But the abstraction breaks when it comes to performance: different
architectures are better at difference tasks and a common interface
will not change that.

Our case study investigates how streaming aggregation maps to
currently available parallel architectures. We are primarily inter-
ested in parallel architectures that are available to developers right
now. Multicore architectures are often characterized as “emerging,”
but that is no longer the case. There are multiple kinds of mul-
ticore processors currently on the market. Multicore architectures
will certainly continue to change, and perhaps change radically, but
developers have to deal with the current multicore reality. The pur-
pose of our case study is to identify which current parallel architec-
tures are acceptable accelerators for streaming aggregation, while
at the same time determining which characteristics of our chosen
application are applicable to stream computing as a whole.

In our case study, we compare the parallelization of streaming
aggregation on three different parallel architectures. We use a se-
quential version as the baseline. On one end of the multicore spec-
trum we have an Intel Core 2 Quad system [2], which is a homoge-
neous multicore similar in principle to an SMP. On the other end we
have an Nvidia GeForce GTX 285 GPU [4], which is radically data
parallel: thousands of threads performing tiny amounts of work,
but with coarse access to main memory. Somewhere in the mid-
dle is the Cell Broadband Engine [9], which is better suited at data
parallel computations than a homogeneous multicore [7] but is not
as massively data parallel as a GPU. It is better than the GPU at
control-intensive code, but not as good as the Intel multicore. Like
the GPU, it allows for explicit control of data movement, but like
the Intel multicore, it has the same latency and bandwidth connec-
tion to main memory.

Streaming aggregation is an obviously data parallel problem that
appears often in the domain of high frequency trading [26]. Ex-
tracting useful parallelism from the computation is more difficult
than it appears due to both its streaming nature and the data char-
acteristics from our domain of high frequency trading. First, its
streaming nature means we have only relatively small amounts of



data at a time. Second, our data is live stock market trades and
quotes [6, 26]. The frequency of trades for a particular symbol
roughly follow Zipf’s law [8], which causes a severe data distri-
bution imbalance. Using our stock market derived workload, we
determine the best configuration for each implementations against
each other.

We distinguish our study from prior work in two ways. Two
prior studies used code generators specific to their problem do-
mains. The work of Datta et al. [11] used a code generator specific
to stencil computations, and the work of Linford et al. [19] used a
code generator specific to chemical kinetics. Our study focuses on
streaming aggregation, but uses compilers which support a more
general class of problems. The second distinguishing characteristic
is the class of problems covered by our study. Aggregation per-
forms a single pass over memory, which is in contrast to stencil and
chemical kinetics codes which rely on data reuse for high perfor-
mance. Not being able to benefit from data reuse has a significant
impact on an algorithm’s suitability to a particular architecture.

The work of van Amesfoort et al. [23] compares the implemen-
tation and performance of a data-intensive convolution resampling
kernel on platforms similar to our study: a cache-based homoge-
neous CPU, a GPU and the Cell. Their work looks at a problem
that is data-movement bound in a similar way that streaming aggre-
gation is. However, they consider the performance of the kernel in
isolation. Because we work in a streaming context, we cannot look
exclusively at the performance of our computational kernel. We
must also consider the performance of both transferring the data to
the kernel, and communicating results back out to the rest of our
streaming system. While we are interested in the performance of
our computational kernel, we are primarily focused on accelerating
streaming aggregation in existing streaming systems. As such, we
must consider all data transfer costs associated with real systems.

We set out to answer several questions in our case study. We
know that the GPU has enormous computational potential, but do
the constraints of streaming aggregation prevent us from being able
to exploit it? It is not obvious if the latency and bandwidth between
the host and the GPU is sufficient for streaming data. Aggregation
is naturally data parallel, and the GPU is computationally better
suited for the problem than the Cell architecture, but the Cell has a
lower latency access to main memory. Can a lower latency, higher
bandwidth connection make up for lack of computational power?
Both the Cell and the Intel Quad communicate with main mem-
ory in the same way. However, we can schedule memory transfers
on the Cell based on the exact access patterns seen in streaming
aggregation. Does such scheduling of memory transfers perform
better than the cache-based prefetcher in the Intel Quad? From our
experimental results, we answer these questions and derive several
lessons:

• GPUs are not well suited to data movement bound algorithms
which perform a single pass through memory.

• Fine-grained memory transfers between the host and GPU
perform poorly.

• Programmable caches are able to achieve significantly better
performance than hardware managed caches with data move-
ment bound problems with regular access patterns.

• In streaming aggregation, data movement efficacy trumps
raw computational power.

These lessons provide guidance to those that have to implement
and deploy large scale streaming systems.

2. BACKGROUND
High frequency trading requires significant computational in-

frastructure. That infrastructure must be capable of transferring
massive amounts of data at high speeds, and simultaneously, per-
form analysis on that data in real-time. The time requirements are
significant, because a late answer is of no use, even if correct.

Large scale, distributed stream computing provides the compu-
tational infrastructure and development environment that problems
such as high frequency trading require. Questions in high fre-
quency trading that involve multiple trades or quotes of a particular
stock are solved with aggregation. The combination of streaming
aggregation with stock market data implies two unusual attributes
that affect our ability to obtain an efficient parallelization. The first
attribute is the inherent streaming nature of dealing with live mar-
ket data; the second is the frequency distribution of particular stock
symbols when dealing with such data. In this section we elaborate
on both of these points.

2.1 Streaming Aggregation
Streaming implies the constant arrival of live data which must

be processed in real-time. Achieving real-time processing requires
both high throughput and low latency. Our work focuses on prob-
lems that are relevant to IBM’s System S [5, 15, 16, 24, 25] and the
SPADE (Stream Processing Application Declarative Engine) pro-
gramming language [12, 13] that runs on top of it. In SPADE, op-
erators are connected to each other through streams. Operators re-
ceive, process and send data tuples through their streams. SPADE is
a stream-oriented programming language as streams serve as both
the main communication mechanism between operators and deter-
mine how an application is compiled and deployed.

A streaming aggregation involves at least one stream feeding into
an operator where we want aggregate information on some period
of history for that stream. For example, a streaming aggregation
could be as simple as “for every 5 numbers, emit their average.”
The window is the set of tuples involved in each aggregation—in
the prior example, the sets are every 5 numbers in the stream. That
window is also called a count-based window since its size is deter-
mined by a count of the number of tuples seen. The alternative is
a time-based window, where the number of tuples in a window is
determined by how much time has passed, which means the num-
ber of tuples that will appear in any given window can vary. There
are two alternatives for how a window progresses: tumbling ver-
sus sliding. A tumbling window will throw out all of its previous
values after each aggregation, whereas a sliding window will slide
the window by a predetermined amount. While the computation
performed in the example was an average, in principle, the compu-
tation can be any that requires a set of values, such as a minimum,
maximum or summation.

Aggregations can also be further subdivided into groups [6]. With-
out distinguishing between groups, an operator places all tuples
into the same window. When using groups, an operator creates
windows for each group class, as specified by the programmer.
Our experiments use only count-based, tumbling windows where
the groups are stock symbols taken from stock market data. This
aggregation is performed when computing the volume-weighted
average-price for a particular stock, which investors use to guide
their own trades.

Our case study only considers aggregations with count-based,
tumbling windows. While the semantics of time-based and sliding
windows are different for the consumers of such aggregations, the
systems-level implications are similar. Specifically, the memory
transfer requirements will remain the same. For this reason, our
conclusions should hold for other kinds of aggregations.
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Figure 1: Stock symbol frequency distribution histograms.

W

N

meta table window matrix partials table

Figure 2: Data structures used in partial aggregations.

2.2 Parallel Streaming Aggregation
Inherent in streaming is the concept of tuple ingestion, process-

ing and subsequent generation of the results. This is sequential and
predicated on tuple arrival, even though a streaming operator like
this can be a part of a larger, distributed parallel application. In
order to extract the most parallelism from such a configuration, we
must decouple the tuple ingestion from the processing and sending.

When the parallel tuple computation has no history—when com-
puting the result for a particular tuple does not depend on any that
came before it—the decoupled computation can still occur based
on tuple arrivals. But when the parallel computation relies on data
history, as it does in the case of streaming aggregations, it can no
longer be based solely on tuple arrivals.

We must make sure that each instance of the parallel computation
has enough tuples to actually exploit data parallelism. Hence, ag-
gregations become periodic (time-based rather than arrival-based).
We have turned a streaming problem into many small batch prob-
lems, which introduces a trade-off between low-latency and having
enough data to exploit useful parallelism.

Performing aggregations on a periodic basis, instead of when the
window is full, requires introducing the concept of partial aggrega-
tions. Since we will always perform an aggregation at a particular
time with whatever data is currently in the window, we need to pre-
serve the partial results so that they can be used during the next
time period. The partials table, which contains the partial aggrega-
tions, is one of three data structures used in streaming aggregations.
Figure 2 shows the three data structures and their relationships: the
meta table, the partials table and the window matrix. The window
matrix is an N ×W matrix where N is the total number of groups
in the aggregation (each stock symbol corresponds to a group in
our experiments) andW is size of the window. The meta table is of

length N , and each entry contains bookkeeping information for a
group in the matrix. This bookkeeping information is an index into
the partials table, an index for the next available entry in the win-
dow, a flag to indicate if it contains a fully aggregated result, and
the result itself (which in our case is the volume-weighted average
price).

The meta table must contain an index into the partials table be-
cause while the nth entry in the meta table will always map to the
nth entry in window matrix, this condition does not hold for the
partials table. This discrepancy is due to the fact that the nth entry
in the meta table will not always contain the same group. They do
not always contain the same group because the meta table and win-
dow matrix are populated with tuples from groups in the order they
arrive so that the first entries always have windows with at least one
tuple. In the partials table, however, the nth entry is always for the
same group. This consistency is required because the partials table
is used across aggregations, while a single meta table and window
matrix are only used for a single aggregation.

In naively constructed data structures, the meta information would
be interwoven with the window matrix. However, the memory lay-
out considerations of the parallel hardware we use requires their
separation because in certain circumstances we can avoid transfer-
ring empty parts of the window matrix.

2.3 Stock Market Distribution
Our data is a set of stock trades and quotes throughout August

8, 2005. This data set contains N = 2805 stock symbols and
about 12 million trades (18%) and quotes (82%). The frequency
of a particular stock symbol being traded in a given day roughly
follows Zipf’s law, which predicts that frequency of items with rank
x appearing is proportional to 1/xα, where α is close to 1 [8].

In order to reason about our distribution, we appeal to two prop-
erties of Zipf’s law. First, some symbols will have almost full win-
dows, but most windows will be either empty or have very few
tuples in their windows. Second, as this distribution is fractal, the
prior point holds no matter what time period we use. We cannot fix
the data distribution problem by waiting longer; a longer period will
introduce more groups with few tuples. To illustrate this problem,
Figure 1 shows three different aggregation matrices from three dif-
ferent granularities—waiting for 1,000, 10,000 and 100,000 tuples.
Even though each successive matrix contains an order of magnitude
more tuples than the next, they all have the general same shape, and
with it the same data distribution problems.

3. CASE STUDY
Our case study compares the performance of three implemen-

tations of streaming aggregation on three different parallel archi-



Intel Core 2 Quad • 4 cores at 2.66 GHz
• 8 MB shared L2
• 3.8 GB RAM
• 12.8 GB/s max bandwidth from
RAM through memory controller
• 42.56 GFLOPS

PowerXCell 8i • 2 Cells at 3.2 GHz
• 32 GB RAM
• 2 PPEs: 2 SMT threads, 32 KB L1,
512 KB L2
• 16 SPEs: 256 KB local store
• 25.6 GB/s max bandwidth from
RAM through on-chip memory inter-
face controller
• 102.4 GFLOPS

Nvidia GeForce GTX 285 • 240 cores at 648 MHz
• 1 GB global memory
• PCI Express 2.0 with 16 lanes, 8
GB/s max bandwidth
• 1062.72 GFLOPS

Table 1: Hardware.
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Figure 3: Physical layout of our experimental machines. The
node with the Intel Quad and Nvidia GPU are on the left, and
the Cell node is on the right.

tectures. The parallel architectures represent the current spectrum
of multicore processors available to developers. All three imple-
mentations require comparable coding effort, leveraging existing
compilers and runtimes to produce high-performance code suited
to its respective architecture.

The purpose of this case study is to explore the suitability of
these parallel architectures for accelerating streaming aggregation.
Our end-goal is to allow SPADE programmers to mark operators
with an accelerate keyword. The SPADE compiler then generates
the correct systems-level code for the desired acceleration hard-
ware. The first step towards this goal is to both identify which par-
allel architectures can accelerate the computation, and what systems-
level code will achieve high performance.

3.1 Parallel Hardware
We list the specifications for the hardware used in our study in

Table 1. The Intel Quad system was also the host for the Nvidia
GPU. The physical layout and constraints of our experimental setup
are shown in Figure 3.

Qualitatively, the Intel Quad is the most general purpose proces-
sor, the Nvidia GPU is the most specialized, and the Cell is some-
where in the middle. The Intel Quad is a homogeneous multicore
processor with out-of-order execution and a large, hardware con-
trolled cache with hardware prefetching [18]. The Nvidia GPU has
240 cores, where each core has 32 execution pipelines (threads)
which have access to 16 KB of shared memory. The execution
pipelines inside a core execute in lock-step through the same code.

f(x)  f(x)Source

TradeFilter VWAP

BargainIndex Sink

Aggregator

TradeQuote

f(x)

f(x)

QuoteFilter

Figure 4: Stock market bargain discovery using SPADE. Our
work occurs in the Aggregator operator.

These two architectures represent opposite ends of the spectrum
of how to overlap memory latency with computation. The Intel
Quad allows a single thread of execution to issue instructions out-
of-order. Instructions that cause cache misses do not prevent in-
structions that do not rely on that data from proceeding. Each in-
struction pipeline in the Nvidia GPU 285 is in-order, but there are
thousands of them, and they can be scheduled in groups of 32 to
overcome latency. However, this applies to the Nvidia GPU 285’s
access to its own global memory. In order to have data, the host
must initiate a transfer from main memory, off the motherboard,
over a PCI Express bus. Note that this means the data must travel
through the motherboard’s memory controller—just as it must for
the Intel Quad—before it travels over the PCI Express bus.

We place the Cell architecture in the middle of these two because
it retains direct access to main memory, but it is a heterogeneous
architecture suited for data and task parallelism. A Cell processor
has a Power Processing Element (PPE) and eight Synergistic Pro-
cessing Elements (SPEs). The PPE is an in-order PowerPC core
with hardware controlled caches. The SPEs are in-order, SIMD
cores with a 256 KB local storage. The local storage is not hard-
ware controlled; explicit Direct Memory Accesses (DMAs) issued
by software are the only way to access main memory.

3.2 Implementations
We derived our synthetic experiments from the SPADE applica-

tion for stock market bargain discovery depicted in Figure 4. The
purpose of the application is to analyze live stock market data to
discover “bargain” purchases where the current asking price for a
stock is less than the volume-weighted average price. The applica-
tion computes these values by splitting the stock market data into
trades (top stream) and quotes (bottom stream). The trades must
be aggregated based on their stock symbol over a certain window
of time. This operation is a group-based aggregation (see Sec-
tion 2.1). These aggregated values are then used to calculate the
volume-weighted average price for each stock. The bargain dis-
covery occurs when the two streams are joined again.

Empirical evaluation has shown that the aggregation operator is
the bottleneck in this application. Our benchmark extracts the ag-
gregation and tries to accelerate it by exploiting parallelism. Our
experiments use market data from August 8, 2005 to create a sta-
tistical model which is used to generate experimental data.

All implementations, whose computational kernels are in Fig-
ure 5, follow the fork-join model of data parallelism [20]. The
program is sequential up until the point of the aggregation. The ag-
gregation is performed in parallel, the details of which depend on
the architecture-specific implementation. After the parallel section,
the sequential portion of the code has access to the results.

The code we present is systems-level code suitable for the SPADE
compiler to generate based on high-level SPADE programs. Our
goal is to protect SPADE programmers from having to consider the
architectural details of the parallel accelerators available to them.

All implementations are data parallel across groups; aggrega-
tions over a particular window happen independently and in paral-



lel. Only groups that have received tuples for a given period will
take part in the computation. The data structures involved are the
meta table, the partials table and the window matrix, which were
described in detail in Section 2.1.

3.2.1 OpenMP
OpenMP [21], a directive-based parallel programming model for

C, C++ and Fortran, is well suited for exploiting data parallelism on
a homogeneous multicore processor. Each thread in our OpenMP
implementation of the data parallel aggregation has the same char-
acteristics of the sequential version. It relies on cache misses and
hardware prefetching to move data around the memory hierarchy.
Also, it avoids accessing empty values by maintaining groups with
non-empty windows in a contiguous portion of the window matrix,
as described in Section 2.1.

The workload causes a data distribution problem: the stock groups
with the most trade transactions in their window are likely to be
clustered together. If the window matrix is naively partitioned in
contiguous ranges, the thread which gets the beginning of the ma-
trix will have more work than the other threads. To avoid this im-
balance, we use OpenMP’s dynamic scheduler, which distributes
work to threads on-demand as the threads finish their prior assign-
ments. We compiled both the OpenMP and sequential implemen-
tations with Intel’s C Compiler, version 11 [14].

3.2.2 CUDA
CUDA [3] is an architecture for general purpose programming

on GPUs which provides language extensions for C. Note that the
code in Figure 5 does not include the data transfers from host mem-
ory to GPU memory. Before starting GPU computations, we must
send both the meta table and the window matrix (Figure 2) to the
GPU. A separate GPU thread is assigned to each group, and only
groups with at least one tuple are sent to the GPU. The algorithm is
linear in the number of groups and the threads share no data, which
obviates the need to tile global memory access.

After the computation, only the meta table (containing the re-
sults) is sent back to the host. The partials table remains resident
on the GPU, and the window matrix is no longer needed by the
host.

We implemented three versions for the GPU: one which uses
synchronous bulk communication between the host and the GPU,
one which uses asynchronous bulk communication, and one which
does many small transfers. The synchronous implementation sends
the meta table and window matrix to the GPU with one memory
copy, then waits for the GPU to compute and send the result back
to host main memory. However, Nvidia’s GTX 285 has a memory
controller which can operate independently of the computational
hardware. This independence allows our asynchronous implemen-
tation to, in principle, overlap GPU computation time with commu-
nication time by sending the data for a future aggregation during the
computation for the current aggregation.

Both the synchronous and asynchronous implementation send
the entire window matrix to the GPU, even though most of the win-
dows are only partially filled. We allocate the meta table and the
window matrix so that they are contiguous in memory, which al-
lows us to issue a single memory copy to transfer all of the data.
However, we are still sending data that is not actually used in the
computation. Our third implementation does at most N + 1 mem-
ory transfers instead of one memory transfer. The first memory
copy is for the meta table, and the remaining transfers send only
the actual tuples contained in each window.

3.2.3 Cellgen
Cellgen [1, 22] is a directive based parallel language and com-

piler similar to OpenMP. Based on memory access patterns in high-
level code, Cellgen generates Cell-specific data transfers. These
transfers stream data from main memory through the SPEs using
multi-buffering, which hides data transfer latency by overlapping
it with computation. We handle the data imbalance by populating
the meta table and aggregation matrix in a round-robin manner so
that the fullest windows are spread out over the SPEs. Each SPE
handles a number of groups determined at runtime.

Over the course of a computation, all of the meta data is trans-
ferred to an SPE’s local storage. However, if the meta data for a
group indicates that the window for that group is empty, that SPE
immediately moves on to the next group. Because the meta table
and window matrix are accessed in different ways, their transfers
are scheduled differently.

4. RESULTS
In our experiments, we explored the entire range of number of

tuples to aggregate at one time. For example, when we say that
a window matrix has 1,000 tuples, that simulates a rate of 1,000
trades a second. The window matrix (of sizeN×W ) is necessarily
larger than 1,000 tuples; in this case, N = 2805 and W = 130.
We scaled the window size to match the number of tuples the most
populous group contains out of the total 1,000 tuples.

The highest transaction rate seen in our dataset is about 3,000
trades per second. Thus, in our experiments, the range that applies
to current market rates is 1,000–10,000 tuples (assuming a one sec-
ond aggregation frequency). We explored higher rates in antici-
pation of increased market activity [10], and lower rates to under-
stand at what point parallelization is beneficial. The lower rates are
particularly important because they indicate the minimum problem
size that can benefit from parallel hardware acceleration. Offload-
ing execution to accelerators and managing parallelism both have
an associated overhead. If the time it takes to perform an aggre-
gation sequentially is less than the associated overhead, then that
problem size is too small to benefit from parallelism.

An aggregation matrix has dimensions N ×W , where N is the
number of stock symbols (groups) and W is the size of the win-
dow. In our experiments, N is fixed because the number of stock
symbols does not change. For each of these experiments we scale
the window size,W , so it matches the number of tuples in the most
populous group. Due to the nature of our distribution, the most
populous group is roughly 1% of the total number of market trans-
actions.

Since W must increase with the total number of tuples in a ma-
trix, the size of the window matrix also grows. Table 2 shows the
total amount of data involved in each aggregation. All results in
this section look at both the execution time for a single aggrega-
tion, and the tuples aggregated per second. All scales in our graphs
are logarithmic. On the x-axis, in addition to the number of tuples
in the window matrix (top), we also label the axis with the window
size (middle) and the window matrix size in MB (bottom). This
data is in Table 2, but we use all three labels to clarify the rela-
tionships between performance and the corresponding number of
tuples processed, window size and window matrix size.

4.1 Intra-implementation Comparisons
Before we can compare the different implementations to each

other, we must first establish which parameters are best for each
parallel architecture.



#pragma omp p a r a l l e l for schedule ( dynamic , 64)
for ( i n t g = 0; g < tab le−>meta−>cu r r ; ++g ) {

const i n t n = tab le−>meta−>raw [ g ] . g loba l ;

for ( i n t i = 0 ; i < tab le−>meta−>raw [ g ] . next ; ++ i ) {
p a r t i a l s [ n ] . svwap += tab le−>mat r i x [ g ] [ i ] . svwap ;
p a r t i a l s [ n ] . svolume += tab le−>mat r i x [ g ] [ i ] . svolume ;
++ p a r t i a l s [ n ] . count ;

i f ( p a r t i a l s [ n ] . count == W) {
tab le−>meta−>raw [ g ] . r s l t . svwap = p a r t i a l s [ n ] . svwap ;
tab le−>meta−>raw [ g ] . r s l t . svolume = p a r t i a l s [ n ] . svolume ;

p a r t i a l s [ n ] . count = 0 ;
p a r t i a l s [ n ] . svwap = 0;
p a r t i a l s [ n ] . svolume = 0;

tab le−>meta−>raw [ g ] . send = true ;
}

}

tab le−>meta−>raw [ g ] . next = 0 ;
}

__global__ void aggregata t ion ( AggrMeta∗ meta ,
Agg rPa r t i a l (∗mat r i x ) [W] ,
Agg rPa r t i a l∗ p a r t i a l s , const i n t threads )

{
const i n t g = b lock Idx . x ∗ THREADS + thread Idx . x ;

i f ( g >= threads ) {
return ;

}

const i n t n = meta [ g ] . g l oba l ;
for ( i n t i = 0 ; i < meta [ g ] . next ; ++ i ) {

p a r t i a l s [ n ] . svwap += mat r i x [ g ] [ i ] . svwap ;
p a r t i a l s [ n ] . svolume += mat r i x [ g ] [ i ] . svolume ;
++ p a r t i a l s [ n ] . count ;

i f ( p a r t i a l s [ n ] . count == W) {
meta [ g ] . r s l t . svwap = p a r t i a l s [ n ] . svwap ;
meta [ g ] . r s l t . svolume = p a r t i a l s [ n ] . svolume ;

p a r t i a l s [ n ] . count = 0 ;
p a r t i a l s [ n ] . svwap = 0;
p a r t i a l s [ n ] . svolume = 0 . 0 ;

meta [ g ] . send = true ;
}

}

meta [ g ] . next = 0 ;
}

#pragma c e l l shared ( AggrMeta∗ meta = meta−>raw ,
Agg rPa r t i a l∗ mat r i x = mat r i x [N ] [W] ,
Agg rPa r t i a l∗ p a r t i a l s = p a r t i a l s )

{
i n t g , i ;

for ( g = 0 ; g < N; ++g ) {
i n t next = meta [ g ] . next ;

f l o a t svwap = p a r t i a l s [ g ] . svwap ;
f l o a t svolume = p a r t i a l s [ g ] . svolume ;
i n t count = p a r t i a l s [ g ] . count ;

f l o a t res_svwap ;
f l o a t res_svolume ;
char send = 0;

i f ( next == 0) {
continue ;

}

for ( i = 0 ; i < next ; ++ i ) {
svwap += mat r i x [ g ] [ i ] . svwap ;
svolume += mat r i x [ g ] [ i ] . svolume ;
++count ;

i f ( count == W) {
res_svwap = svwap ;
res_svolume = svolume ;

send = 1;
svwap = 0;
svolume = 0;
count = 0 ;

}
}

meta [ g ] . r s l t . svwap = res_svwap ;
meta [ g ] . r s l t . svolume = res_svolume ;
meta [ g ] . send = send ;
meta [ g ] . next = 0 ;

p a r t i a l s [ g ] . svwap = svwap ;
p a r t i a l s [ g ] . svolume = svolume ;
p a r t i a l s [ g ] . count = count ;

}
}

Figure 5: Parallel aggregation kernels. Top left is OpenMP for a homogeneous multicore, bottom left is CUDA for GPUs, and right
is Cellgen for Cell. Note that the parallelization effort is similar for all three architectures.

number of tuples 1 10 50 100 500 1k 5k 10k 50k 100k 500k 650k
window size 1 2 2 4 11 18 49 130 485 1,120 5,000 7,000

meta data (MB) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
window matrix (MB) 0.043 0.086 0.086 0.17 0.47 0.77 2.1 5.6 21 48 214 300

Table 2: Data involved in each aggregation.

4.1.1 Sequential
Our sequential implementation runs on a single core on our Intel

Quad node (Figure 6). This implementation serves as the base-
line. We experimented with two different sequential versions: a
full method which naively iterates over allN entries of the window
matrix, and a shortcut method which takes advantage of always
packing groups with non-empty windows in the beginning of the
window matrix. The shortcut optimization is simple, but impor-
tant: by not iterating over windows that we know are empty, we
avoid touching that memory. If we do not access that memory,
then we also do not pay the cost of those cache misses. This is an
obvious sequential optimization, but the notion of “do not transfer
data you do not need” becomes even more important on the parallel
architectures.

The difference between shortcut and full in Figure 6 becomes
negligible at matrices with 5,000 tuples, which is with a window of
W = 49. While N is fixed at 2,805 stock symbols for all of our
experiments, as the total number of tuples in the window matrix
increases, more stocks will take place in the aggregation. Hence,

avoiding a linear traversal of N becomes less important.

4.1.2 OpenMP on Intel Quad
For the OpenMP implementation on the Intel Quad (Figure 7),

we varied the number of threads. While the processor has four
cores, the shared L2 cache and shared access to main memory in-
hibit improvement when scaling from three to four threads. As
expected, OpenMP with a single thread performs within a close
margin, never more than 34%, of the sequential implementation.

As seen in Figure 7, there is no benefit from multithreading until
the number of tuples reaches 1,000, where two threads outperform
a single thread by 7%. Before this point, the matrices are too small
for the work done by each thread to overcome the synchronization
costs. After 10,000 tuples, three threads outperform a single thread
by a factor of 1.2 to 2.2. The performance of the OpenMP imple-
mentation is limited by the fact that aggregations are data move-
ment bound. The hardware limits performance through uncoordi-
nated memory accesses, and a single point of memory access for all
threads. The processor requests data from main memory based on
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Figure 6: Performance of two sequential implementations.

tuples 1 10 50 100 500 1k 5k 10k 50k 100k 500k 650k
GPU ratio 0.959 0.959 0.961 0.962 0.973 0.982 0.994 0.998 0.999 0.9998 0.99995 0.99997
Cell ratio 0.464 0.467 0.463 0.443 0.372 0.347 0.316 0.317 0.317 0.237 0.172 0.155

Table 3: Ratio of data transfer time to total aggregation time for GPU and Cell.

cache misses. Since the amount of computation is small compared
to data movement time, these cache misses turn into stall cycles.

4.1.3 CUDA on GPU
In Figure 8, we compare the synchronous, asynchronous and

fine-grained transfer implementations on the GPU. Because most
of the cost is in the data transfer from main memory to the GPU,
we also show the time spent only on the computation. All three im-
plementations have the same computation; they only differ in how
memory is transferred from the host to the GPU.

The asynchronous implementation makes no more than a 26%
difference up until 1,000 tuples, and no more than a 12% differ-
ence above 1,000 tuples in total execution time compared to the
synchronous implementation. Because the communication is about
100 times more expensive than the actual computation, there is lit-
tle room for communication and computation overlap. Once the
data arrives at the GPU, it is extremely efficient at the computa-
tion, which can be seen in Figure 8 both by the flat execution time
and by the constantly improving aggregation rate. The aggrega-
tion is a data parallel problem, and GPUs are efficient data parallel
machines. But in this case, the actual performance is not deter-
mined by the computation on the GPU, but by the data transfers
from host main memory to the GPU. This point is supported by
Table 3, which shows the ratio of data transfer time to total aggre-
gation time for the asynchronous implementation.

The GPU is also not well suited to many, small memory copies.
The implementation with fine-grained memory transfers performs,
at worst, 100 times slower than the implementations that do one
memory transfer. However, as we increase the number of tuples in
each window matrix, which also increases W (the window size),
the difference starts to decrease up until 500,000 tuples (W =
5000) where the fine-grained implementation outperforms the bulk
transfers by 35%. At this point, the window matrix is 300 MB,
which is roughly a third the size of the global memory on the GPU.
We cannot increase the window matrix significantly and still have
enough space for the two window matrices required by the asyn-
chronous implementation.

4.1.4 Cellgen on Cell
We varied the number of SPEs used in our Cell implementation

and compared that to the performance of the PPE, as seen in Fig-
ure 9. We expected the performance of the PPE aggregation to
not scale as we increased the total number of tuples. In line with
this expectation, even the single SPE aggregation eventually out-
performs the PPE aggregation. However, there are startup costs
associated with executing a computational kernel on the SPE, and
we wanted to identify the cross-over point where the SPE imple-
mentations finally outperform the PPE. For all but the single-SPE
case, this cross-over is at 100 tuples, which is a matrix of 2,805
stock symbols with 4 trades per window.

That the single SPE case outperforms the PPE at all, which first
occurs at 10,000 tuples, is instructive. The single SPE case is not
parallel, which eliminates any appeal to simultaneous execution.
The aggregation is not computationally bound, so the increased
computational power of the SPE does not help. Rather, the single
SPE case is able to outperform the PPE because Cellgen generates
data transfers based on the access patterns in the code. The PPE
and the SPEs use the same memory interface controller to commu-
nicate with main memory. Yet, the PPE relies on cache misses to
initiate transfers, while SPEs prefetch data based on memory access
patterns recognized by Cellgen. Data prefetching allows for fine-
grained overlap of data transfers and computation. Using multiple
SPEs introduces parallelism. Hence, the 2, 4, 8 and 16 SPE cases
have intelligent, parallel data transfers and scale appropriately. The
importance of overlapping data transfers with computation is ev-
ident in Table 3, which shows the ratio of exposed data transfer
times to total time for an aggregation using all 16 SPEs. Com-
paring the GPU and Cell ratios, unoverlapped data transfer costs
account for a significantly smaller fraction of the total aggregation
time.

4.2 Inter-implementation Comparison
We compare all of the implementations in Figure 10, using the

best configuration for that hardware as shown by the results in the
previous section. For the sequential version, this is the shortcut
method; for OpenMP, it is with 3 threads; for the GPU we show
both the asynchronous implementation with bulk transfers and the
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Figure 7: Performance of different number of threads used in the Intel Quad implementation.
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Figure 8: Performance of different data transfer strategies for the GPU implementations.

fine-grained transfers because there is performance cross-over with
large numbers of tuples; and for the Cell it is with all 16 SPEs. The
sequential version is our baseline. For small problem sizes, we ex-
pect the sequential version to perform the best. The point at which
the parallel implementations outperform the sequential version is
the minimum problem size needed to exploit parallelism.

In comparison to the sequential version, the OpenMP implemen-
tation pays synchronization costs for work distribution and thread
coordination. Consequently, parallelism does not help until there is
enough work to effectively distribute. This cross-over point occurs
at 1,000 tuples in an aggregation. After that point, the benefit of
using three cores ranges from 4% to 46%.

The asynchronous GPU implementation never outperforms the
sequential version. It suffers from the fact that it must transfer the
entire window matrix to the GPU. In contrast, the sequential ver-
sion avoids accessing empty parts of the window matrix. Since
they are never accessed, the sequential code never pays the cost of
transferring data from main memory into the processor cache. The
computation on the GPU itself is up to 650 times faster than on a
single core of the host CPU, but that is dwarfed by the data trans-
fer cost. Streaming aggregation is fundamentally a data-movement
problem, not one of computational power.

While the GPU implementation with fine-grained data transfers
eventually outperforms the bulk synchronous implementation, at its
best, the fine-grain transfers are still over 10 times slower than the
sequential version. The asynchronous bulk implementation tells us

that the bandwidth between the GPU and host main memory is too
low to overcome the cost of sending the entire window matrix; the
fine-grained implementation tells us that the latency is too high to
do many, small transfers to avoid sending unneeded data. Future
heterogeneous multicore architectures can solve this problem with
tight coupling between the main processor and the accelerating co-
processors.

The Cell implementation also has startup costs associated with
distributing work to the SPEs. The first point at which using the
SPEs is beneficial compared to the sequential version is at 1,000
tuples, where the Cell implementation is 3.9 times faster. As the
number of tuples increases and the window matrix increases in size,
this performance improvement grows to as large as 5 times faster
than the sequential implementation.

5. CONCLUSIONS
Our results show that the Cell architecture is the best fit for

streaming aggregation. Further, this result should hold for other
streaming operations that perform a single pass through memory,
and have a low computation-per-byte ratio. The Cell architecture
fits these class of problems not because of computational power,
but data movement efficacy. The GPU is capable of massive data
parallelism, but it is not well suited to the many, periodic, small
data transfers that are typical in streaming aggregation. Multiple
cores of the Intel Quad eventually outperform a single core, but it
relies on cache misses to fetch data. The Cell’s SPEs have the same



0.01

0.1

1

10

100

1000

10000

100000

100

1
0.043

101

2
0.086

102

4
0.17

103

18
0.77

104

130
5.6

105

1120
48

ag
gr

eg
at

io
n 

tim
e 

pe
r 

w
in

do
w

 m
at

rix
 (

µs
)

tuples per matrix / window length / matrix size in MB

Cell Time

ppe
1 spe

2 spes
4 spes
8 spes

16 spes
0.01

0.1

1

10

100

1000

100

1
0.043

101

2
0.086

102

4
0.17

103

18
0.77

104

130
5.6

105

1120
48

M
ill

io
n 

tu
pl

es
 a

gg
re

ga
te

d 
pe

r 
s

tuples per matrix / window length / matrix size in MB

Cell Rate

ppe
1 spe

2 spes
4 spes
8 spes

16 spes

Figure 9: Performance of different number of SPEs used for the Cell implementation.
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Figure 10: Performance comparison of all implementations.

low latency, high bandwidth connection to main memory that the
Intel Quad has, but the data transfers are based on the access pat-
terns seen in the code, not cache misses. The GPU has more raw
computational power than Cell, but it is limited by its connection to
main memory. The SPEs can initiate small transfers based on data
seen in a computation. In contrast, the GPU cannot dynamically
transfer data based on its needs while inside of a computational
kernel. Because of this difference, the Cell is able to avoid trans-
ferring unneeded data, while the GPU requires it.

Based on these results and experiences accelerating streaming
aggregation on three parallel architectures, we draw conclusions
for both software developers and hardware architects.

Developers must first understand the memory access patterns
in their algorithms in relation to the computation. Our problem,
streaming aggregation, is obviously data parallel, but it is not well
suited to GPUs, the hardware that is best suited for exploiting data
parallelism. Our algorithm performs a single pass of all the mem-
ory transferred to the GPU, and only one floating point operation is
performed for each discrete value transferred.

Developers must also have an understanding of data movement
on the architectures. Homogeneous multicore CPUs transfer data
from main memory based on cache misses. GPUs have their own
internal memory hierarchy which was not an issue in any of our
experiments, but must be well understood to take full advantage of
their computational power. On top of that, GPUs have the require-
ment that all data must first be transferred from host main memory

to GPU global memory. The Cell architecture has the same kind
of access to main memory as a homogeneous multicore, and with
the aid of access-pattern aware compilers such as Cellgen, it can
prefetch data.

Developers must finally be able to map their understanding of
their algorithms to what will happen on the hardware. Streaming
aggregation is not well suited to GPUs because algorithms which
perform only a single pass of the transferred data and have little
computation per element will not be able to overcome the need to
fully transfer all data out of host main memory before the computa-
tion starts. Streaming aggregation is well suited to the Cell because
its fine-grain data transfers and programmable local store allows
prefetching. In contrast, a single-pass algorithm with unstructured
accesses to memory would probably perform best on the hardware
cache based CPU, and algorithms with quadratic (or worse) mem-
ory use would be able to overcome the cost of transferring data to
the GPU.

For hardware architects, we appeal to the need for accelerators
to be on the motherboard. Our experiments would be different if
we had an architecture that was radically data parallel like a GPU,
but also enjoyed direct access to main memory like the Intel Quad
and Cell. The computational potential for GPUs is extraordinary,
but we are limited by the granularity of its memory transfers.
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