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Abstract. Recent advances in processor technology such as Simultane-
ous Multithreading (SMT) and Chip Multiprocessing (CMP) enable par-
allel processing on a single die. These processors are used as building blocks
of shared-memory multiprocessor systems, or clusters of multiprocessors.
New programming languages and tools are necessary due to the complex-
ities introduced by systems with multigrain, multilevel execution capa-
bilities. This paper introduces Factory, an object-oriented parallel pro-
gramming substrate which allows programmers to express multigrain par-
allelism, but alleviates them from having to manage it. Factory is written
in C++ without introducing any extensions to the language. Because it
leverages existing C++ constructs to express arbitrarily nested parallel
computations, it is highly portable and does not require extra compiler
support. Moreover, Factory offers programmability and performance com-
parable to already established multithreading substrates.

Keywords: Multithreading substrate, Object-oriented parallel program-
ming, Deep parallel architectures, Multiparadigm parallelism, Portabil-
ity, Programmability.

1 Introduction

Conventional processor technologies capitalize on increasing clock frequencies
and on using the full transistor budget to exploit ILP. The diminishing returns
of such approaches have shifted the focus of computer systems designers to clus-
tering and parallelism. Current mainstream processors such as SMTs, CMPs and
hybrid CMP/SMTs exploit coarse-grain thread-level parallelism at the microar-
chitectural level [1,2]. Thread-level parallelism is pervasive in high-end micro-
processor designs as well [3,4].

Disparity in memory access latencies and the multiple levels of parallelism
offered by emerging hardware necessitate programming languages, libraries and
tools that enable users to express and control such parallelism. Furthermore,
programmers need the means to map different granularities of parallelism to the
different levels offered by emerging hardware. Unfortunately, current industry
standards for expressing parallelism, such as MPI [5] and OpenMP [6], do not rise
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to these challenges, because they are designed and implemented with optimized
support for a flat parallel execution model and provide little to no additional
support for multilevel execution models.

In this paper, we present Factory, an object-oriented parallel programming
substrate written entirely in C++. Factory was designed as a substrate for im-
plementing next-generation parallel programming models that naturally incor-
porate multiple levels and types of parallelism controlled by an intelligent run-
time system. Factory is functional as a standalone parallel programming library
without requiring additional compiler or preprocessor support. The main goals
of Factory are to:

– Provide a clean, object-oriented interface for writing parallel programs.
– Provide a type-safe parallel programming environment.
– Define a unified interface to multiple types of parallelism.
– Allow effective exploitation and granularity control for multilevel and multi-

tier parallelism within the same binary.
– Provide a pure C++ runtime library which does not need external interpreter

or compiler support.

We outline the design and implementation of Factory and evaluate its per-
formance using a multi-SMT compute node as a target testbed. Our primary
contribution is a concrete set of object-oriented capabilities for expressing mul-
tiple forms of parallelism in a unified manner, along with generic runtime mech-
anisms that enable the exploitation of multiple forms of parallelism in a single
program. As such, Factory can serve as a runtime library for next-generation,
object-oriented parallel programming systems that target deep, multigrain par-
allel architectures. Factory also makes contributions in the direction of imple-
menting more efficient object-oriented substrates for parallel programming. Its
features include lock-free synchronization, flexible scheduling algorithms that are
aware of SMT/CMP processors and hierarchical parallel execution, and localized
barriers for independent sets of work units.

The rest of this paper is organized as follows: Section 2 briefly discusses prior
work which relates to Factory. In Section 3 we present the design of Factory. Sec-
tion 4 compares Factory’s performance with other multithreading programming
models and substrates and shows that Factory can exploit the most commonly
used forms of parallelism without compromising performance. We discuss future
work and conclude the paper in Section 5. An extended version of this paper
can be found in [7].

2 Related Work

There is a large body of earlier work in multithreading programming models and
object-oriented frameworks for parallel programming. We focus on recent and
active projects with strong relation to Factory.

Cilk [8] is an extension to C with explicit support for multithreaded pro-
gramming. Cilk is designed to execute strict multithreaded computations and
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provides firm algorithmic bounds for the execution time and space requirements
of these computations. Although Factory shares some functionality with Cilk,
it has a different and broader objective, since its focal point is the exploitation
of multilevel and multiparadigm parallelism, including task-level, loop-level and
divide-and-conquer parallelism.

OpenMP [6] is an industry standard for programming on shared memory
multiprocessors. OpenMP is particularly suitable for expressing loop based par-
allelism in multithreaded C, C++ and Fortran programs. Instead of explicitly
extending the language, programmers use compiler directives that adhere to the
OpenMP standard to express parallelism. The current OpenMP standard has
limitations related to the orchestration and scheduling of multiple levels of paral-
lelism. A limited form of static task-level parallelism is supported in OpenMP via
the use of parallel sections. Dynamic task-level parallelism is not currently sup-
ported by the OpenMP standard, although some vendors, such as Intel, provide
platform-specific implementations [9,10]. Factory differs from OpenMP in that
it provides a generic object-oriented programming environment for expressing
multiple forms of parallelism explicitly and in a unified manner, while providing
the necessary runtime support for effectively scheduling all forms of parallelism.

X10 [11] is an ongoing project at IBM to develop an object-oriented parallel
language for emerging architectures. The proposed language has a rich set of
features, including C++ extensions to describe clustered data structures, ex-
tensions to define activities (threads) for both communication and computation
and associate these activities with specific nodes, and other features. We view
Factory as a complementary effort to X10, which places more emphasis on the
runtime issues that pertain to the management of multigrain parallelism, with-
out compromising expressiveness and functionality. Furthermore, Factory can
be used as a supportive runtime library for extended parallel object-oriented
languages such as X10.

3 Design

The design of Factory focuses on leveraging existing C++ constructs to ex-
press multiple types of parallelism at multiple levels. We find the mechanisms
provided by C++ expressive enough that we do not have to resort to defining
a new language or language extensions which require a separate interpreter or
compiler. The combination of inheritance and a sophisticated type system allows
the design of a clean, well defined, high-level interface for the development of
efficient parallel code. The implementation of Factory solely in C++ and exclu-
sively at user level makes it a multithreading substrate that is portable across
different architectures and operating systems. A more detailed presentation of
the design, including a small object allocator optimized for object reuse across
multiple threads, can be found in [7].

3.1 Enabling Multiparadigm Parallelism with C++

C++ enables the programmer to define class hierarchies. Factory exploits this
feature to define all types of parallel work as classes which inherit from a general
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work class. However, deeper in the hierarchy, classes are dissociated according
to the type of work they represent. In the context of this paper we focus on
task- and loop-parallel codes, however the Factory hierarchy is easily extensible
to other forms of parallelism as well.

Inheritance allows the expression of different kinds of parallelism, with dif-
ferent properties, via a common interface. Factory exploits the C++ templates
mechanism in order to adapt the functionality and the behavior of the multi-
threading runtime according to the requirements of the different forms of parallel
work. As a result, Factory allows programmers to easily express different kinds
of parallel work, with different properties, through a common interface. At the
same time, they can efficiently execute the parallel work, transparently using the
appropriate algorithms and mechanisms to manage parallelism.

Work as Objects: Objects are the natural way to represent chunks of par-
allel work in an object-oriented programming paradigm. Parallel work can be
abstracted as an implementation of an algorithm and a set of parameters, which
in turn can be directly mapped to a C++ object (represented as a work unit).
Specific chunks of the computation are consequently represented as objects of a
work unit class.

The user-defined member function work() implements the computation for
the specific work unit, and its member fields serve as the computation’s parame-
ters. For each type of computation the programmer defines a new class. Objects
instantiated from this class represent different chunks of the computation. At run-
time, Factory executes the work() member function of each work unit object.

More details on the Factory interface can be found in [7].

Work Inheritance Hierarchy: All different kinds of Factory work units ex-
port a common API to the programmer as a way to enhance programmability.
However, in order to differentiate internally between different kinds of work units
and provide the required functionality in each case, Factory work units are orga-
nized in an inheritance hierarchy. The hierarchy structure facilitates the addition
of new types of work, or the refinement of existing types, without interfering with
unrelated types.

The work unit base class is the root of the work inheritance hierarchy. It
defines the minimal interface that a work unit must provide. Programmer defined
work units do not inherit directly from work unit, but rather from classes at
the leaves of the inheritance tree, which correspond to particular types of work.

The tree unit class derives directly from work unit, and is used to express
parallel codes that follow a dependence driven programming model. Work units
which derive from tree unit are organized as a dependence tree at runtime,
which is used by Factory to enforce the correct order of work unit execution.
Both task unit and loop unit derive from tree unit and they are used by
programmers to define task- and loop-parallel work chunks respectively. These
classes provide the required support and functionality for the efficient execution
of each specific type of parallel computation. A plain unit can, in turn, be used
for codes that are not dependence-driven and directly manage the execution of
work chunks at the application level.
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Work Execution: All the interaction of applications with the Factory runtime
system occurs through an object of the factory class1. While work unit classes
are used to express the parallel algorithms, the factory class provides the nec-
essary functionality for their creation, management and execution. The factory
class defines member functions for starting and stopping parallel execution, as
well as creating, scheduling, and synchronizing work units.

3.2 Scheduling

Factory incorporates a generic, queue-based runtime system based on local, per
execution context work queues. The later are implemented using non-blocking,
lock-free FIFO and LIFO queue management algorithms [12]. The queue hierar-
chy can be easily extended in order to map more accurately to the target parallel
architecture. We have implemented several kinds of scheduling algorithms based
on LIFO and FIFO execution order of work units, but programmers can also
define their own, according to the specific needs of their applications. Our perfor-
mance evaluation section demonstrates that Factory schedulers achieve identical
or better performance than both generic and customized, application-embedded
user-level schedulers.

Factory uses kernel threads as execution vehicles. Each execution vehicle is
bound to a specific execution context and has its own local work queue, from
which it receives work through the active scheduling algorithm. Load balancing
is achieved via work stealing from remote queues. Factory provides hierarchy-
conscious work stealing algorithms, which favor work stealing between execution
contexts close in the architectural hierarchy.

3.3 Synchronization

Factory provides support for the efficient execution of dependence-driven parallel
codes. Each work unit employs a children counter to keep track of the number of
in-flight children work units. As a result, a dependence tree is dynamically formed
and maintained at runtime. The leaves of the tree are work units without depen-
dencies, which are either currently executing, or are ready to execute in the future.
The internal nodes represent work units whose execution is blocked because they
have to wait for the termination of their children before they can continue.

Correct order of execution is enforced through Factory barriers, which oper-
ate on a particular work unit. The execution is either blocked until all children
work units in the dependence subtree of the calling work unit have terminated
(child barrier() member function of the factory class), or until both the
children and the work unit itself have terminated (root barrier() member
function).

Whenever a barrier prevents further execution of a work unit, the corre-
sponding execution vehicle is not blocked. The user-level scheduling algorithm
is invoked, and the execution vehicle starts executing other work units. When
1 Throughout the paper we use the notation Factory to refer to the multithreading

substrate and factory to refer to the class.
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the dependencies of the blocked work unit are satisfied, the blocked work unit
is allowed to resume.

4 Performance Evaluation

We have experimentally evaluated the performance of Factory on a multilevel
parallel architecture, namely an SMT-based multiprocessor. We compare Factory
against other popular parallel programming models, namely OpenMP, Cilk and
parallelization using POSIX threads.

Our experimental platform is a quad SMP, based on Intel Hyper-Threaded
(HT) processors. Intel HT processors share most of the internal processor re-
sources between 2 simultaneously executing threads. The system is equipped
with 2 GB of main memory and runs Linux (2.6.8 kernel). We created our bina-
ries using the Intel Compiler suite for 32-bit applications (version 8.1).

We experimented using both microbenchmarks to assess the overheads for
managing parallelism and parallel applications to compare Factory against the
aforementioned parallel programming models. All experiments throughout our
evaluation have been executed 20 times. We report the average timings across
all 20 repetitions. The 95% confidence interval for each data point has always
been lower than 1.7% of the average.

4.1 Minimum Granularity of Exploitable Parallelism

The minimum granularity of parallelism that can be effectively exploited by
any multithreaded substrate is directly related to the degree of overheads—
both architecture-specific and software-related—associated with the creation and
management of parallel jobs.

The minimum granularity experiment consists of a variable number of pause
assembly instructions. The number of the instructions is reduced until a break-
even point is identified, at which point the sequential execution is as fast as the
parallel one. The sequential execution time of the number of instructions corre-
sponding to the break-even point is the minimum granularity. We represent work
with pause instructions because they incur as minimal interference as possible
when executed simultaneously on the different execution contexts of a single HT
processor. The minimum granularity is also a factor of the number of threads
used for the parallel execution. We thus evaluate the minimum granularity for
the parallel execution with 2, 4 and 8 threads which are either packed on as few
or spread to as many physical CPUs as possible. The different binding schemes
allow the evaluation of both intra- and inter-processor parallelism overheads.

Table 1 summarizes the measured minimum exploitable granularity of Fac-
tory and the other multithreading systems. We compare Factory against Cilk,
which supports only strict multithreaded computations with recursive task par-
allelism, and OpenMP. For the latter, we distinguish between the task- and
loop-minimum granularities, as the OpenMP runtime uses different mechanisms
for each. For task parallelism we use Intel compiler’s workqueue extensions to
OpenMP [6,10]. Factory uses the same mechanisms for creating parallel work
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Table 1. Comparison of the minimum granularity of effectively exploitable parallelism

2 Threads 4 Threads 8 Threads
1 CPU 2 CPUs 2 CPUs 4 CPUs 4 CPUs

Factory 6.2µsec 6.2µsec 10µsec 10µsec 26µsec
Cilk 121µsec 81µsec 153µsec 153µsec 222µsec

OpenMP task 20µsec 20µsec 26µsec 24µsec 202µsec
OpenMP loop 10µsec 6.2µsec 6.2µsec 4.2µsec 68µsec

units, regardless of whether these work units are used for task- or loop-parallelism.
As a result, it is represented by only one entry in the table.

Factory’s minimum task granularity is finer than Intel’s task queue imple-
mentation in OpenMP and remains competitive with OpenMP’s loop granularity
even though Intel’s implementation of loop- and task-level parallel execution is
heavily optimized. At the same time, Factory proves able to exploit significantly
finer granularity than Cilk. Although the point where Cilk achieves speedup is
relatively high, the break-even point is significantly lower, close to the perfor-
mance of OpenMP tasks. This behavior can be attributed to the fact that for
very fine-grain parallel work, the Cilk runtime actually schedules multiple tasks
to the same kernel thread. Hence, Cilk requires a relatively large work load before
multiple threads are used to execute it. Both Cilk and OpenMP perform better
when threads are spread to as many physical CPUs as possible. Factory over-
heads, on the other hand, are uncorrelated with thread placement, making it a
more predictable multithreading substrate for deep, multilevel parallel systems.

4.2 Factory vs. Other Programming Models

Radiosity is an application from the Splash-2 [13] benchmark suite which com-
putes the equilibrium distribution of light in a scene. It uses several pointer-
based data structures and has an irregular memory access pattern. The code
uses application-level task queues and applies work stealing for load balancing.
Radiosity tests Factory’s ability to handle fine grain synchronization, since it is
sensitive to the efficiency of synchronization mechanisms [14]. It also allows a
direct comparison of Factory with POSIX Threads as underlying substrates for
the implementation of hand crafted parallel codes. Porting the original code to
Factory required just the conversion of the task concept to a work unit object.
Both implementations were executed with the options -batch -largeroom. The
performance results are depicted in Figure 1.

Factory consistently performs better than the POSIX Threads, mainly due
to its efficient, fine-grain synchronization mechanisms. There is a 17% perfor-
mance improvement from 4 to 8 threads, which is significantly less than the 72%
improvement from 1 to 4 threads. This degradation is caused by each Radiosity
thread using almost all shared execution resources.

We tested Factory using both LIFO and FIFO lock-free scheduling policies.
LIFO execution ordering yielded better performance due to temporal locality,
since data shared between the parent and children work units are likely to be
found in the processor cache if a LIFO ordering is applied.
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OpenMP taskq for parallel, Strassen ma-
trix multiplication

As a next step, we experimented with an optimized parallel implementation
of the Strassen algorithm from the Cilk distribution. The algorithm is applied
on 2048x2048 double precision floating point matrices. The OpenMP version
of the application is based on Intel’s OpenMP extensions for the support of
task queues. Once again, the conversion to the Factory programming model
was straightforward. We replaced recursive Cilk functions with work unit classes
(task unit). The conversion to OpenMP was also simple: recursive calls to Cilk
functions have just been preceded by OpenMP task directives.

As shown in Figure 2, we also experimented with lock-free and lock-based
queue implementations in Factory. All four implementations attain good scala-
bility until 4 threads. After that point, at least one processor is forced to exe-
cute threads on both SMT contexts. When more than 4 threads are used, the
OpenMP implementation suffers erratic performance. Cilk is not affected by
intra-processor parallelism. It should be noted that Cilk’s work stealing algo-
rithm avoids locking the queues in the common execution scenario [15]. The
Factory implementation that uses a lock-based queue implementation also suf-
fers a performance degradation at 5 and 6 threads. However, the problem is
solved if lock-free queues are used.

The performance degradation at 5 and 6 threads is related to synchronization.
Previous studies indicate that lock-free algorithms are more efficient than lock-
based ones under high contention or multiprogramming [12]. The execution of
more than one thread on the execution contexts of SMT processors often has
similarities to a multiprogrammed execution on a conventional SMP. As a result
of resource sharing, SMT-based multiprocessors may prove more sensitive to the
efficiency of synchronization mechanisms than conventional SMPs.

5 Conclusions and Future Work

We have presented Factory, an object-oriented parallel programming substrate,
which allows the exploitation of multiple types of parallelism on deep parallel
architectures. Factory uses a unified and clean interface to express different, po-
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tentially nested forms of parallelism. Its implementation allows its use both as a
standalone parallel programming library and as a runtime system for high-level
object-oriented languages for parallel programming. The performance optimiza-
tions of Factory include lock-free synchronization for internal concurrent data
structures and scheduling policies which are aware of the topology of hierarchi-
cal parallel systems. We have presented performance results that illustrate the
efficiency of the central mechanisms for managing parallelism in Factory and
justify our design choices for these mechanisms. We have also presented results
obtained from the implementation of parallel applications with Factory which
show that Factory performs competitively with other parallel programming mod-
els for shared-memory systems.

We regard Factory as a viable means for programming emerging parallel
architectures and for preserving both productivity and efficiency. We plan to
extend Factory in several directions, including the introduction of hierarchical
scheduling algorithms that are aware of the type of parallelism they manage and
the integration of precomputation into the runtime.
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