
Booting: From Power Up to Login Prompt

CSCI780: Linux Kernel Internals
Summer 2004

Scott Schneider

Boot Process 1

Big Picture

The Linux boot process is conceptually broken up into five main stages:

• BIOS: hardware initialization, gets boot loader up

• Boot Loader: loads kernel into executable state

• setup, setup 32: pre-kernel initialization

• start kernel(): kernel initialization proper

• init: user level initialization process

The exact boot process differs depending on the architecture and the storage device Linux

boots from. We’re going to trace through an i386 boot from a hard drive; for us, that’s

the most common case.

My emphasis is on the kernel initialization itself, which means I’m not going to cover the

BIOS or LILO in detail.

Boot Process 2

BIOS

The absolute beginning. Immediately after the power button is pressed:

• RESET pin of the CPU is raised.

• Registers are set to default values.

• The BIOS code at physical address 0xfffffff0 is executed.

The BIOS then:

• Power On Self Test (POST) which checks for and tests hardware.

• Initialize hardware devices, display PCI device list.

• Find an OS to boot; we’re going to assume it found LILO on a hard drive

• Copies contents of the first sector into RAM and jumps into that code.

The primary goal here is to get the boot loader loaded into memory, and then jump to

that code. Linux doesn’t depend on the initializations that the BIOS does at this point; it

redos everything, so we’re not going to cover it in any more detail.

Boot Process 3

The Boot Loader: LILO

LILO (LInux LOader) is a single stage boot loader that has no knowledge of filesystems

or Linux itself. It achieves everything through calls to the BIOS. Since it knows nothing

of filesystems, it has to request files on the disk through the BIOS using physical disk

addresses, provided by a map file. The map file is configured when LILO is installed.

After loaded, LILO:

• Loads the map file using the BIOS and displays the boot message.

• Prompts user to select a kernel.

• Loads the kernel using BIOS calls and the values in the map file.

• Executes the kernel.

Boot Process 4

The Boot Loader: GRUB

While LILO is easy to understand, no one uses it anymore. The most common boot loader

used for Linux is GRUB (GRand Unified Bootloader).

GRUB starts out similar to LILO, but it loads more code in stages so that it understands

the filesystem and even the network. A command line is eventually exposed, as opposed

to a simple menu to select a kernel as LILO does.

There’s quite a lot more to the BIOS and boot loaders, but we’re going to end our

discussion of them here so we can get down to the kernel code.

Boot Process 5

setup or Pre-Pre-Pre-Kernel

This is it. This is the beginning, the entry point for all i386 kernel code. Keep in mind

that at this point, we still don’t have an executable kernel image in memory, and we still

have to start up just about all hardware. Which the BIOS mostly already did.

The Linux kernel is paranoid. It doesn’t trust the BIOS to initialize everything, so it goes

through and does it again.

Boot Process 6

From (arch/i386/boot/setup.S):

start:

jmp trampoline

. . .

trampoline: call start_of_setup

start_of_setup:

. . .

Check if an old loader tries to load a big-kernel

testb $LOADED_HIGH, %cs:loadflags # Do we have a big kernel?

jz loader_ok # No, no danger for old loaders.

cmpb $0, %cs:type_of_loader # Do we have a loader that

can deal with us?

jnz loader_ok # Yes, continue.

This is the first time we encounter the concept of a ”low” and ”high” loaded kernels. A

low loaded kernel is a smaller image, produced with make zImage and a high loaded kernel

is larger, produced with make bzImage. We’re going to assume we have a bzImage, high

loaded kernel.

Boot Process 7

Still in (arch/i386/boot/setup.S):

Get memory size (extended mem, kB)

xorl %eax, %eax

movl %eax, (0x1e0)

movb $0x88, %ah

int $0x15

movw %ax, (2)

Send interrupt to BIOS to get memory size.

Memory size is stored in %ax register.

There’s three other methods for determining the memory size. The above method is the

”Ye Olde Traditional Methode” which runs when STANDARD MEMORY BIOS CALL is defined.

The others are hairy.

Boot Process 8

Still in (arch/i386/boot/setup.S):

Set the keyboard repeat rate to the max

movw $0x0305, %ax

xorw %bx, %bx

int $0x16 Send interrupt to the keyboard.

We initialize the keyboard very early - notice that we haven’t even touched the CPU yet.

Why?

Boot Process 9

Still in (arch/i386/boot/setup.S):

Check for video adapter and its parameters and allow the

user to browse video modes.

call video # NOTE: we need %ds pointing

to bootsector

Determine the video mode, set it correctly and test it. After this call, we have a monitor

that can at least display some characters. Detailed monitor information has been tucked

away so that the kernel proper can use it. All of this code is in arch/i386/boot/video.S;

it’s quite long and hairy. We’re going to skip it, but feel free to take a look if you want to

see what user menus look like when coded in assembly.

And those menus are why we need to initialize the keyboard so early; even at this early

stage, we’re depending on user input.

Boot Process 10

Still in (arch/i386/boot/setup.S):

Get hd0 data...

xorw %ax, %ax

movw %ax, %ds

ldsw (4 * 0x41), %si

movw %cs, %ax # aka SETUPSEG

subw $DELTA_INITSEG, %ax # aka INITSEG

pushw %ax

movw %ax, %es

movw $0x0080, %di

movw $0x10, %cx

pushw %cx

cld

rep

movsb

%ds points to the boot sector.
Load boot sector information into memory.

Now we know about our hard drive.

Boot Process 11

Still in (arch/i386/boot/setup.S):

Check for PS/2 pointing device

movw %cs, %ax # aka SETUPSEG

subw $DELTA_INITSEG, %ax # aka INITSEG

movw %ax, %ds

movw $0, (0x1ff) # default is no pointing device

int $0x11 # int 0x11: equipment list

testb $0x04, %al # check if mouse installed

jz no_psmouse

movw $0xAA, (0x1ff) # device present

A general purpose ”So, what do we have here?” interrupt is issued, and we check the

corresponding bit for a PS/2 mouse.

Boot Process 12

Still in (arch/i386/boot/setup.S):

Now we want to move to protected mode ...

cmpw $0, %cs:realmode_swtch

jz rmodeswtch_normal

. . .

rmodeswtch_normal:

pushw %cs

call default_switch

default_switch:

cli # no interrupts allowed !

movb $0x80, %al # disable NMI for bootup

sequence

outb %al, $0x70

lret

This code doesn’t actually switch us to protected mode. It just sets things up so that

when we want to (right before we jump into the kernel), we’re ready.

Boot Process 13

Still in (arch/i386/boot/setup.S):

we get the code32 start address and modify the below ’jmpi’

(loader may have changed it)

movl %cs:code32_start, %eax

movl %eax, %cs:code32

We need to make sure we’re going to jump to the correct address when it’s time to load

the kernel.

Now we move the system to its rightful place ... but we check if we have a

big-kernel. In that case we *must* not move it ...

testb $LOADED_HIGH, %cs:loadflags

jz do_move0 # .. then we have a normal low

loaded zImage

.. or else we have a high

loaded bzImage

jmp end_move # ... and we skip moving

And that did the actual move of the kernel to the correct place. Now we know the kernel

is in a good and known place.

Boot Process 14

Still in (arch/i386/boot/setup.S):

set up gdt and idt

lidt idt_48 # load idt with 0,0

xorl %eax, %eax # Compute gdt_base

movw %ds, %ax # (Convert %ds:gdt to a linear ptr)

shll $4, %eax

addl $gdt, %eax

movl %eax, (gdt_48+2)

lgdt gdt_48 # load gdt with whatever is

Set up the Global Descriptor Table and Local Descriptor Table. Note that we have to be

in real mode to do this, as protected mode depends on these.

Boot Process 15

Still in (arch/i386/boot/setup.S):

well, that went ok, I hope. Now we mask all interrupts - the rest

is done in init_IRQ().

movb $0xFF, %al # mask all interrupts for now

outb %al, $0xA1

call delay

movb $0xFB, %al # mask all irq’s but irq2 which

outb %al, $0x21 # is cascaded

Being interrupted now would be bad; we’re about to do the switch to protected mode, and

then the jump the kernel.

Boot Process 16

Still in (arch/i386/boot/setup.S):

Well, that certainly wasn’t fun :-(. Hopefully it works, and we don’t

need no steenking BIOS anyway (except for the initial loading :-).

The BIOS-routine wants lots of unnecessary data, and it’s less

"interesting" anyway. This is how REAL programmers do it.

Read: masochistic and paranoid. We basically just redid most of the work the BIOS did.

Well, now’s the time to actually move into protected mode. To make

things as simple as possible, we do no register set-up or anything,

we let the gnu-compiled 32-bit programs do that. We just jump to

absolute address 0x1000 (or the loader supplied one),

in 32-bit protected mode.

#

Note that the short jump isn’t strictly needed, although there are

reasons why it might be a good idea. It won’t hurt in any case.

movw $1, %ax # protected mode (PE) bit

lmsw %ax # This is it!

jmp flush_instr

Now we’re in protected mode.

Boot Process 17

Still in (arch/i386/boot/setup.S):

flush_instr:

xorw %bx, %bx # Flag to indicate a boot

xorl %esi, %esi # Pointer to real-mode code

movw %cs, %si

subw $DELTA_INITSEG, %si

shll $4, %esi # Convert to 32-bit pointer

.byte 0x66, 0xea # prefix + jmpi-opcode

code32: .long 0x1000 # will be set to 0x100000

for big kernels

.word __KERNEL_CS

And that concludes our re-implementation of the BIOS. Which brings us to the . . .

Boot Process 18

startup 32, Take 1 or Pre-Pre-Kernel

We’re still not in the kernel proper. Remember, our kernel image is still compressed. We

need to decompress it before we can jump into it (arch/i386/boot/compressed.S):

startup_32:

/*

* Do the decompression, and jump to the new kernel..

*/

subl $16,%esp # place for structure on the stack

movl %esp,%eax

pushl %esi # real mode pointer as second arg

pushl %eax # address of structure as first arg

call SYMBOL_NAME(decompress_kernel)

orl %eax,%eax

jnz 3f

popl %esi # discard address

popl %esi # real mode pointer

xorl %ebx,%ebx

ljmp $(__KERNEL_CS), $0x100000

decompress kernel() is an interesting digression, so let’s take a look inside.

Boot Process 19

decompress kernel()

From (arch/i386/boot/compressed/misc.c):

asmlinkage int decompress_kernel(struct moveparams *mv, void *rmode)

{

. . .

puts("Uncompressing Linux... ");

gunzip();

puts("Ok, booting the kernel.\n");

if (high_loaded) close_output_buffer_if_we_run_high(mv);

return high_loaded;

}

gunzip() is a library routine in lib/inflate.c. Several standard functions have to be

redefined in misc.c in order for gunzip() to work correctly, such as error(), memcpy(),

memset(), puts(), malloc() and free(). The reimplementation of malloc() just uses a long

to keep track of what physical memory has already been used; free() is even simpler:

static void free(void *where)

{ /* Don’t care */

}

Boot Process 20

startup 32, Take 2 or Pre-Kernel

This is the second setup 32 assembly function, from (arch/i386/kernel/head.S):

startup_32:

. . .

/*

* Initialize page tables

*/

movl $pg0-__PAGE_OFFSET,%edi /* initialize page tables */

movl $007,%eax /* "007" doesn’t mean with right to kill, but

PRESENT+RW+USER */

2: stosl

add $0x1000,%eax

cmp $empty_zero_page-__PAGE_OFFSET,%edi

jne 2b

Boot Process 21

Still in (arch/i386/kernel/head.S):

/*

* Enable paging

*/

3:

movl $swapper_pg_dir-__PAGE_OFFSET,%eax

movl %eax,%cr3 /* set the page table pointer.. */

movl %cr0,%eax

orl $0x80000000,%eax

movl %eax,%cr0 /* ..and set paging (PG) bit */

jmp 1f /* flush the prefetch-queue */

1:

movl $1f,%eax

jmp *%eax /* make sure eip is relocated */

1:

/* Set up the stack pointer */

lss stack_start,%esp

There’s lots more initialization we’re going to skip over, such as detecting what kind of

CPU we’re running.

Boot Process 22

Still in (arch/i386/kernel/head.S):

xorl %eax,%eax

lldt %ax

cld # gcc2 wants the direction flag cleared at all times

#ifdef CONFIG_SMP

movb ready, %cl

cmpb $1,%cl

je 1f # the first CPU calls start_kernel

all other CPUs call initialize_secondary

call SYMBOL_NAME(initialize_secondary)

jmp L6

1:

#endif

call SYMBOL_NAME(start_kernel)

L6:

jmp L6 # main should never return here, but

just in case, we know what happens.

And that’s it, we’re now in the kernel proper.

Boot Process 23

start kernel() or Kernel Proper

From (init/main.c):

asmlinkage void __init start_kernel(void)

{

/*

* Interrupts are still disabled. Do necessary setups, then

* enable them

*/

lock_kernel();

printk(linux_banner);

setup_arch(&command_line);

printk("Kernel command line: %s\n", saved_command_line);

parse_options(command_line);

trap_init();

init_IRQ();

sched_init();

softirq_init();

time_init();

Ensure only one CPU does initialization.

Setup drive, screen, paging, ACPI and device memory.

kernel ... ro root=/dev/hda4 hdc=ide-scsi vga=791

Boot Process 24

console_init();

#ifdef CONFIG_MODULES

init_modules();

#endif

. . .

kmem_cache_init();

sti();

calibrate_delay();

. . .

mem_init();

kmem_cache_sizes_init();

pgtable_cache_init();

. . .

fork_init(num_mappedpages);

proc_caches_init();

vfs_caches_init(num_physpages);

buffer_init(num_physpages);

page_cache_init(num_physpages);

. . .

signals_init();

#ifdef CONFIG_PROC_FS

proc_root_init();

#endif

Done early for debugging purposes.

Empty for i386. So what happens? See slide 31.

Enable interrupts again.

Determine jiffies.

Ensures thread structures don’t take up more than half of memory.

/proc file system initialization.

Boot Process 25

#if defined(CONFIG_SYSVIPC)

ipc_init();

#endif

check_bugs();

printk("POSIX conformance testing by UNIFIX\n");

/*

* We count on the initial thread going ok

* Like idlers init is an unlocked kernel thread, which will

* make syscalls (and thus be locked).

*/

smp_init();

rest_init();

}

Initializes System V semaphores, shared memory and messages.

Lots of error checking, including the Pentium divide bug.

Initialize everything else - see next slide.

Boot Process 26

rest init()

Still in (init/main.c):

/*

* We need to finalize in a non-__init function or else race conditions

* between the root thread and the init thread may cause start_kernel to

* be reaped by free_initmem before the root thread has proceeded to

* cpu_idle.

*/

static void rest_init(void)

{

kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

unlock_kernel();

current->need_resched = 1;

cpu_idle();

}

This thread is process 0 and becomes swapper, aka the idle process; forked thread is

process 1 and becomes init (not to be confused with init(), which we are about to get

into).

Boot Process 27

init()

Still in (init/main.c):

static int init(void * unused)

{

lock_kernel();

do_basic_setup();

prepare_namespace();

See next slide.

See slide 33.

We’re going to inerrupt the init() function to take a look at do basic setup() and

prepare namespace(). We shall return, however, as kernel level initialization finishes up in

the init().

Boot Process 28

do basic setup()

Still in (init/main.c):

/*

* Ok, the machine is now initialized. None of the devices

* have been touched yet, but the CPU subsystem is up and

* running, and memory and process management works.

*

* Now we can finally start doing some real work..

*/

static void __init do_basic_setup(void)

{

/*

* Tell the world that we’re going to be the grim

* reaper of innocent orphaned children.

*

* We don’t want people to have to make incorrect

* assumptions about where in the task array this

* can be found.

*/

child_reaper = current;

Boot Process 29

/*

* Ok, at this point all CPU’s should be initialized, so

* we can start looking into devices..

*/

. . .

/* Networking initialization needs a process context */

sock_init();

start_context_thread();

do_initcalls();

. . .

#ifdef CONFIG_PCMCIA

init_pcmcia_ds(); /* Do this last */

#endif

}

Lots of device initialization wrapped in conditionals.

keventd, initializes bottom half.
See next slide.

We’re going to digress into do initcalls() because it’s an interesting aside.

Boot Process 30

do initcalls()

Throughout the kernel, initialization functions are labeled with init. That label tells the

linker that these functions (and data) are to be treated differently than other functions.

Specifically, the function’s address needs to be placed, along with other initialization

functions, in a well known place so that the kernel can call them on boot. From

(include/linux/init.h):

typedef int (*initcall_t)(void);

. . .

extern initcall_t __initcall_start, __initcall_end;

. . .

#define __init __attribute__ ((__section__ (".text.init")))

Boot Process 31

Back to (init/main.c):

static void __init do_initcalls(void)

{

initcall_t *call;

call = &__initcall_start;

do {

(*call)();

call++;

} while (call < &__initcall_end);

/* Make sure there is no pending stuff from the initcall sequence */

flush_scheduled_tasks();

}

After do initcalls() all of the special initialization functions have been called. That’s how

the init modules() function can be empty for i386; they get initialized here.

Boot Process 32

prepare namespace()

This function sets up a properly mounted root filesystem. Very soon after this call, we

depend on the filesystem to exec the init process.

From (init/do_mounts.c):

/*

* Prepare the namespace - decide what/where to mount, load ramdisks, etc.

*/

void prepare_namespace(void)

{

int is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;

. . .

sys_mkdir("/dev", 0700);

sys_mkdir("/root", 0700);

sys_mknod("/dev/console", S_IFCHR|0600, MKDEV(TTYAUX_MAJOR, 1));

. . .

create_dev("/dev/root", ROOT_DEV, NULL);

Boot Process 33

if (mount_initrd) {

if (initrd_load() && ROOT_DEV != MKDEV(RAMDISK_MAJOR, 0)) {

handle_initrd();

goto out;

}

} else if (is_floppy && rd_doload && rd_load_disk(0))

ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);

mount_root();

out:

sys_umount("/dev", 0);

sys_mount(".", "/", NULL, MS_MOVE, NULL);

sys_chroot(".");

mount_devfs_fs ();

}

Boot Process 34

Back in init()

We’ve looked at do basic setup() and prepare namespace(), so we’re back to finish up

init() in (init/main.c):

/*

* Ok, we have completed the initial bootup, and

* we’re essentially up and running. Get rid of the

* initmem segments and start the user-mode stuff..

*/

free_initmem();

unlock_kernel();

if (open("/dev/console", O_RDWR, 0) < 0)

printk("Warning: unable to open an initial console.\n");

(void) dup(0);

(void) dup(0);

/*

* We try each of these until one succeeds.

*

Boot Process 35

* The Bourne shell can be used instead of init if we are

* trying to recover a really broken machine.

*/

if (execute_command)

execve(execute_command,argv_init,envp_init);

execve("/sbin/init",argv_init,envp_init);

execve("/etc/init",argv_init,envp_init);

execve("/bin/init",argv_init,envp_init);

execve("/bin/sh",argv_init,envp_init);

panic("No init found. Try passing init= option to kernel.");

}

Notice that the execve depends on the filesystem. Also note that the path for init is

hardcoded into the kernel. At this point, we have a fully initialized kernel. But the boot

process is not over . . .

Boot Process 36

Big Init

The init user level process is not technically a part of the kernel, but it is still an extremely

important part of a working Linux system. A discussion of the boot process is not complete

without it.

It is process 1. As we’ve seen in previous presentations, it has special status within the

kernel; init can not be killed. It is the root of the process creation tree, and reaps zombie

processes.

The version of init that most Linux distributions have (well, at least ours) is a version

that aims to meet System V specifications, written by Miquel van Smoorenburg. Our

discussion will use his code.

The init program is a non-trivial piece of software, so we’re only going to focus on the

main points and aspects related to the boot process.

Boot Process 37

A Minimal Init

Before we actually start talking about the real deal, let’s take a look at a bare-bones version

of init to get an idea of what absolutely must take place. Alessandro Rubini wrote an

excellent article for the Linux Journal in 1998 titled Take Command: Init that starts with

this shell script as an example:

#!/bin/sh

avoid typing full pathnames

export PATH=/usr/bin:/bin:/sbin:/usr/sbin

remount root read-write, and mount all

mount -n -o remount,rw /

mount -a

swapon -a

system log

syslogd

klogd

Boot Process 38

start your lan

modprobe eth0 2> /dev/null

ifconfig eth0 192.168.0.1

route add 192.168.0.0 eth0

route add default gw 192.168.0.254

start lan services

inetd

sendmail -bd -q30m

Anything else: crond, named, ...

And run one getty with a sane path

export PATH=/usr/bin:/bin

/sbin/mingetty tty1

We mount the root drives, startup system and kernel logging daemons, get a working

network connection, and then execute mingetty. But what does it do?

Boot Process 39

What’s Mingetty?

From the man page:

DESCRIPTION

mingetty is a minimal getty for use on virtual consoles. Unlike

agetty(8), mingetty is not suitable for serial lines. I recommend

using mgetty(8) for this purpose.

So that wasn’t much help. What’s a getty? From the man page:

DESCRIPTION

getty is a program that is invoked by init(1M). It is the second process

in the series, (init-getty-login-shell) that ultimately connects a user

with the UNIX system . . . Initially getty prints the

contents of /etc/issue (if it exists), then prints the login message

field for the entry it is using from /etc/gettydefs, reads the user’s

login name, and invokes the login(1) command with the user’s name as

argument.

Boot Process 40

Init Configuration

Now that we know the basic responsibilities the init process has, lets take a look at the

configuration file for the real thing. From the file (/etc/inittab):

Default runlevel. The runlevels used by RHS are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 - Multiuser, without NFS (The same as 3, if you do not have networking)

3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)

#

id:5:initdefault:

System initialization.

si::sysinit:/etc/rc.d/rc.sysinit

Our systems start X by default.

rc.sysinit is the initialization script that brings up
various system services.

Boot Process 41

Still in (/etc/inittab):

Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

Recall that mingetty sets up login prompts on incoming connections. Saying respawn

means that when the connection is closed (the user logs out), we want to restart the getty

on that line.

Boot Process 42

Miquel’s Init

Having seen the configuration file, and with the knowledge of what init is minimally

responsible for, let’s take a look at some of the code from Miquel’s verson. From (init.h):

/* Actions to be taken by init */

#define RESPAWN 1

#define WAIT 2

#define ONCE 3

#define BOOT 4

#define BOOTWAIT 5

#define POWERFAIL 6

#define POWERWAIT 7

#define POWEROKWAIT 8

#define CTRLALTDEL 9

#define OFF 10

#define ONDEMAND 11

#define INITDEFAULT 12

#define SYSINIT 13

#define POWERFAILNOW 14

#define KBREQUEST 15

Child is being respawned.

Makes sure a child that is already executed isn’t respawned.
This child is involved in bootup procedures.

Power is failing soon.
Power was failing, is okay now.

System shutdown on ctrl+alt+del.

We have the default run level.

This child is involved in system initialization.

Power is failing, shutting down now.

Boot Process 43

From (init.h):

/* Information about a process in the in-core inittab */

typedef struct _child_ {

int flags; /* Status of this entry */

int exstat; /* Exit status of process */

int pid; /* Pid of this process */

time_t tm; /* When respawned last */

int count; /* Times respawned in the last 2 minutes */

char id[8]; /* Inittab id (must be unique) */

char rlevel[12]; /* run levels */

int action; /* what to do (see list below) */

} CHILD;

/* Values for the ’flags’ field */

#define RUNNING 2 /* Process is still running */

#define KILLME 4 /* Kill this process */

#define DEMAND 8 /* "runlevels" a b c */

#define FAILING 16 /* process respawns rapidly */

#define WAITING 32 /* We’re waiting for this process */

#define ZOMBIE 64 /* This process is already dead */

#define XECUTED 128 /* Set if spawned once or more times */

Boot Process 44

The Main Loop

Our last step is to look at the initial execution path of the init process.

int init_main()

{

/* Ignore all signals.

*/

for(f = 1; f <= NSIG; f++)

SETSIG(sa, f, SIG_IGN, SA_RESTART);

SETSIG(sa, SIGALRM, signal_handler, 0);

SETSIG(sa, SIGHUP, signal_handler, 0);

SETSIG(sa, SIGINT, signal_handler, 0);

SETSIG(sa, SIGCHLD, chld_handler, SA_RESTART);

SETSIG(sa, SIGPWR, signal_handler, 0);

SETSIG(sa, SIGWINCH, signal_handler, 0);

SETSIG(sa, SIGUSR1, signal_handler, 0);

SETSIG(sa, SIGSTOP, stop_handler, SA_RESTART);

SETSIG(sa, SIGTSTP, stop_handler, SA_RESTART);

SETSIG(sa, SIGCONT, cont_handler, SA_RESTART);

SETSIG(sa, SIGSEGV, (void (*)(int))segv_handler, SA_RESTART);

signal handler queues signals.

Does a wait for the child, cleans up.

Stops init . . .

And starts it back up again.

Boot Process 45

console_init();

/* Close whatever files are open, and reset the console. */

close(0);

close(1);

close(2);

console_stty();

setsid();

/*

* Set default PATH variable (for ksh)

*/

if (getenv("PATH") == NULL) putenv(PATH_DFL);

/*

* Start normal boot procedure.

*/

runlevel = ’#’;

read_inittab();

start_if_needed();

Load the configuration file.

Run through the list of child processes and start them if needed.

Boot Process 46

while(1) {

/* See if we need to make the boot transitions. */

boot_transitions();

/* Check if there are processes to be waited on. */

for(ch = family; ch; ch = ch->next)

if ((ch->flags & RUNNING) && ch->action != BOOT) break;

if (ch != NULL && got_signals == 0) check_init_fifo();

/* Check the ’failing’ flags */

fail_check();

/* Process any signals. */

process_signals();

/* See what we need to start up (again) */

start_if_needed();

}

/*NOTREACHED*/

}

Boot Process 47

And We’re Done

We now have a fully working Linux system. The while loop executes for the entirety of

when the system is up. (Well, almost. Sometimes init actually does a fork-exec on

itself.)

We’ve discussed the BIOS, the boot loader, and completed a walkthrough of the kernel

code from assembly startup, to C initialization, configuration scripts and ended with one

very important user-level process.

Boot Process 48

References

• Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel, 2nd Edition,

O’Reilly & Associates, 2003.

• Alessandro Rubini & Jonathan Corbet. Linux Device Drivers, 2nd Edition, O’Reilly &

Associates, 2003.

• sysvinit source code, Miquel van Smoorenburg.

http://miquels.www.cistron.nl/

• Alessandro Rubini, Take Command: Init, The Linux Journal, November 1998.

http://www.linux.it/kerneldocs/init/

• Kevin Boone, Understanding the Linux Boot Process.

http://www.kevinboone.com/boot.html

• Linux man pages.

• Linux 2.4.21 source code.

Boot Process 49

