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ABSTRACT
Streaming applications transform possibly infinite streams
of data and often have both high throughput and low la-
tency requirements. They are comprised of operator graphs
that produce and consume data tuples. The streaming pro-
gramming model naturally exposes task and pipeline paral-
lelism, enabling it to exploit parallel systems of all kinds,
including large clusters. However, it does not naturally ex-
pose data parallelism, which must instead be extracted from
streaming applications. This paper presents a compiler and
runtime system that automatically extract data parallelism
for distributed stream processing. Our approach guarantees
safety, even in the presence of stateful, selective, and user-
defined operators. When constructing parallel regions, the
compiler ensures safety by considering an operator’s selec-
tivity, state, partitioning, and dependencies on other oper-
ators in the graph. The distributed runtime system ensures
that tuples always exit parallel regions in the same order
they would without data parallelism, using the most e�cient
strategy as identified by the compiler. Our experiments us-
ing 100 cores across 14 machines show linear scalability for
standard parallel regions, and near linear scalability when
tuples are shu✏ed across parallel regions.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent
Programming–Parallel programming; D.3.4 [Programming

Languages]: Language Classifications–Concurrent,
distributed, and parallel languages

Keywords
distributed stream processing; automatic parallelization

1. INTRODUCTION
Stream processing is a programming paradigm that nat-

urally exposes task and pipeline parallelism. Streaming ap-
plications are directed graphs where vertices are operators
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and edges are data streams. Because the operators are inde-
pendent of each other, and they are fed continuous streams
of tuples, they can naturally execute in parallel. The only
communication between operators is through the streams
that connect them. When operators are connected in chains,
they expose inherent pipeline parallelism. When the same
streams are fed to multiple operators that perform distinct
tasks, they expose inherent task parallelism.

Being able to easily exploit both task and pipeline par-
allelism makes the streaming paradigm popular in domains
such as telecommunications, financial trading, web-scale data
analysis, and social media analytics. These domains re-
quire high throughput, low latency applications that can
scale with both the number of cores in a machine, and with
the number of machines in a cluster. Such applications con-
tain user-defined operators (for domain-specific algorithms),
operator-local state (e.g., for aggregation or enrichment),
and dynamic selectivity1 (e.g., for data-dependent filtering,
compression, or time-based windows).

While pipeline and task parallelism occur naturally in
stream graphs, data parallelism requires intervention. In
the streaming context, data parallelism involves splitting
data streams and replicating operators. The parallelism ob-
tained through replication can be more well-balanced than
the inherent parallelism in a particular stream graph, and
is easier to scale to the resources at hand. Such data paral-
lelism allows operators to take advantage of additional cores
and hosts that the task and pipeline parallelism are unable
to exploit.

Extracting data parallelism by hand is possible, but is usu-
ally cumbersome. Developers must identify where potential
data parallelism exists, while at the same time considering
if applying data parallelism is safe. The di�culty of devel-
opers doing this optimization by hand grows quickly with
the size of the application and the interaction of the sub-
graphs that comprise it. After identifying where parallelism
is both possible and legal, developers may have to enforce
ordering on their own. All of these tasks are tedious and
error-prone—exactly the kind of tasks that compiler opti-
mizations should handle for developers. As hardware grows
increasingly parallel, automatic exploitation of parallelism
will become an expected compiler optimization.

Prior work on auto-parallelizing streaming applications is
either unsafe [17, 22], or safe but restricted to stateless op-
erators and static selectivity [10, 21]. Our work is the first
to automatically exploit data parallelism in streaming ap-

1
Selectivity is the number of tuples produced per tuples consumed;

e.g., selectivity 0.1 means produce 1 tuple for every 10 consumed.



plications with stateful and dynamic operators. Our com-
piler analyzes the code to determine which subgraphs can
be parallelized with which technique. The runtime system
implements the various techniques (round-robin or hashing,
with sequence numbers as needed) to back the compiler’s de-
cisions. We implemented our automatic data parallelization
in SPL [13], the stream processing language for System S [1].
System S is a high-performance streaming platform running
on a cluster of commodity machines. The compiler is obliv-
ious to the actual size and configuration of the cluster, and
only decides which operators belong to which parallel re-
gion, but not the degree of parallelism. The actual degree of
parallelism in each region is decided at job submission time,
which can adapt to system conditions at that moment. This
decoupling increases performance portability of streaming
applications.

This paper makes the following contributions:

• Language and compiler support for automatically discov-
ering safe parallelization opportunities in the presence of
stateful and user-defined operators.

• Runtime support for enforcing safety while exploiting the
concrete number of cores and hosts of a given distributed,
shared-nothing cluster.

• A side-by-side comparison of the fundamental techniques
used to maintain safety in the design space of streaming
optimizations.

2. DATA PARALLELISM IN STREAMING
This paper is concerned with extracting data parallelism

by replicating operators. In a streaming context, replica-
tion of operators is data parallelism because each replica
of an operator performs the same task on a di↵erent por-
tion of the data. Data parallelism has the advantage that
it is not limited by the number of operators in the original
stream graph. Our auto-parallelizer is automatic, safe, and
system independent. It is automatic, since the source code
of the application does not indicate parallel regions. It is
safe, since the observable behavior of the application is un-
changed. And it is system independent, since the compiler
forms parallel regions without hard-coding their degree of
parallelism.

Our programming model is asynchronous, which is in di-
rect contrast to synchronous data flow languages [16] such
as StreamIt [10]. In synchronous data flow, the selectivity of
each operator is known statically, at compile time. Compil-
ers can create a static schedule for the entire stream graph,
which specifies exactly how many tuples each operator will
consume and produce every time it fires. Such static sched-
ules enable aggressive compile-time optimizations, making
synchronous data flow languages well suited for digital sig-
nal processors and embedded devices.

As our programming model is asynchronous, operators
can have dynamic selectivity. We can still use static analysis
to classify an operator’s selectivity, but unlike synchronous
languages, the classification may be a range of values rather
than a constant. Such dynamic selectivity means that the
number of tuples produced per tuples consumed can depend
on runtime information. As a result, we cannot always pro-
duce static schedules for our stream graphs. Our operators
consume one tuple at a time, and determine at runtime how
many (if any) tuples to produce. This dynamic behavior is
often required for big-data stream processing.

composite Main { 
  type 

 Entry = tuple<uint32 uid, rstring server, rstring msg>; 
 Summary = tuple<uint32 uid, int32 total>; 

  graph 
 stream<Entry> Messages = ParSrc() { 
   param  servers:  "logs.*.com"; 
  partitionBy:  server; 
 } 
 stream<Summary> Summaries = Aggregate(Messages) { 
   window  Messages:  tumbling, time(5), partitioned; 
   param  partitionBy:  uid; 
   output  Summaries: uid = Any(uid), total = Count(); 
 } 
 stream<Summary> Suspects = Filter(Summaries) { 
   param  filter:  total > 100; 
 } 
 () as Sink = FileSink(Suspects) { 
   param  file:  "suspects.csv"; 
  format:  csv; 
 } 

} 
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Figure 1: Example SPL program (left), its stream graph (mid-
dle), and the parallel transformation of that graph (right). The
paper icons in the lower right of an operator indicate that that
operator has state, and the numbers in the lower left indicate that
operator’s selectivity.

Another way of thinking about selectivity is the consump-
tion to production ratio. In synchronous data flow, the ratio
is m : n, where m and n can be any integers, but they must
be known statically. In our model, the general ratio is 1 : ⇤.
When an operator fires, it always consumes a single tuple,
but it can produce any number of output tuples, including
none. This number can be di↵erent at each firing, hence we
call this dynamic selectivity.

Figure 1 presents a sample SPL program [13] on the left.
The program is a simplified version of a common streaming
application: network monitoring. The application continu-
ally reads server logs, aggregates the logs based on user IDs,
looks for unusual behavior, and writes the results to a file.

The types Entry and Summary describe the structure of the
tuples in this application. A tuple is a data item consisting of
attributes, where each attribute has a type (such as uint32)
and a name (such as uid). The stream graph consists of
operator invocations, where operators transform streams of
a particular tuple type.

The first operator invocation, ParSrc, is a source, so it does
not consume any streams. It produces an output stream
called Messages, and all tuples on that stream are of type
Entry. The ParSrc operator takes two parameters. The par-
titionBy parameter indicates that the data is partitioned on
the server attribute that is a part of tuple type Entry. We
consider {server} to be the partitioning key for this operator.

The Aggregate operator invocation consumes theMessages
stream, indicated by being “passed in” to the Aggregate op-
erator. The window clause specifies the tuples to operate
on, and the output clause describes how to aggregate input
tuples (of type Entry) into output tuples (of type Summary).
This operator is also partitioned, but this time the key is
the uid attribute of the Entry tuples. Because the Aggregate
operator is stateful, we consider this operator invocation to
have partitioned state. The Aggregate operator maintains
separate aggregations for each instance of the partitioning
key ({uid} in this case). In general, programmers can pro-
vide multiple attributes to partitionBy, and each attribute
is used in combination to create the partitioning key. The
operator maintains separate state for each partitioning key.2

2
In our runtime, operators maintain a map of keys to their associated



The Filter operator invocation drops all tuples from the
aggregation that have no more than 100 entries. Finally,
the FileSink operator invocation writes all of the tuples that
represent anomalous behavior to a file.

The middle of Figure 1 shows the stream graph that pro-
grammers reason about. In general, SPL programs can spec-
ify arbitrary graphs, but the example consists of just a sim-
ple pipeline of operators. We consider the stream graph
from the SPL source code the sequential semantics, and our
work seeks to preserve such semantics. The right of Fig-
ure 1 shows the stream graph that our runtime will actually
execute. First, the compiler determines that the first three
operators have data parallelism, and it allows the runtime
to replicate those operators. The operator instances ParSrc
and Aggregate are partitioned on di↵erent keys. Because the
keys are incompatible, the compiler instructs the runtime to
perform a shu✏e between them, so the correct tuples are
routed to the correct operator replica. The Filter operator
instances are stateless and can accept any tuple. Hence,
tuples can flow directly from the Aggregate replicas to the
Filter replicas, without another shu✏e. Finally, the FileSink
operator instance is not parallelizable, which implies that
there must be a merge before it to ensure it sees tuples in
the same order as in the sequential semantics.

Note that there are no programmer annotations in the
SPL code to enable the extraction of data parallelism. Our
compiler inspects the SPL code, performs the allowable trans-
formations to the graph, and informs the runtime how to
safely execute the application. The operators themselves
are written in C++ or Java and have operator models de-
scribing their behavior. Our compiler uses these operator
models in conjunction with SPL code inspection to extract
data parallelism. While this program is entirely declarative,
SPL allows programmers to embed custom, imperative logic
in operator invocations. Our static analysis includes such
custom logic that is expressed in SPL. Many applications
do not implement their own operators, and instead only use
existing operators. In our example, operators Aggregate, Fil-
ter and FileSink come from the SPL Standard Toolkit, and
operator ParSrc is user-defined.

Processing element (PE) 
Unexpanded parallel region 

Operator instance 
Stream 

Figure 2: Stream graph, from the compiler’s perspective.

Parts of the stream graph that the compiler determines
are safe to parallelize are called parallel regions. To be sys-
tem independent, the compiler produces unexpanded parallel
regions as shown in Figure 2. Besides auto-parallelization,
another important streaming optimization is fusion [10, 15].
Fusion combines multiple operators into a single operating-
system process to reduce communication overhead. We refer
to fused operators as PEs (processing elements). Our com-
piler ensures that PEs never span parallel region boundaries.

The runtime expands parallel regions by replicating their
PEs as shown in Figure 3. A port is the point where a PE
and a stream connect. The runtime implements split as a
special form of output port, and merge as a special form

state. Operators obtain keys by hashing the values of the attributes
from the partitioning set. So, given a state map, a current tuple and
the set of partitioning attributes {a1–an}, each operator firing accesses
state[partition(tuple.a1, tuple.a2, ..., tuple.an)].

Stage 

Channel 
Split 

Expanded parallel region 

PE replica 
Merge 

Figure 3: Stream graph, from the runtime’s perspective.

of input port. We refer to each path through an expanded
parallel region as a channel. The set of replicas of the same
PE is called a stage.

Finally, our runtime is distributed. Each PE can run on a
separate host machine, which means that we must carefully
consider what information to communicate across PEs.

3. COMPILER
The compiler’s task is to decide which operator instances

belong to which parallel regions. Furthermore, the compiler
picks implementation strategies for each parallel region, but
not the degree of parallelism. One can think of the com-
piler as being in charge of safety while avoiding platform-
dependent profitability decisions.

3.1 Safety Conditions
This section lists su�cient pre-conditions for auto-parallel-

ization. As usual in compiler optimization, our approach is
conservative: the conditions may not always be necessary,
but they imply safety. The conditions for parallelizing an
individual operator instance are:

• No state or partitioned state: The operator instance
must be either stateless, or its state must be a map where
the key is a set of attributes from the input tuple. Each
time the operator instance fires, it only updates its state
for the given key. This makes it safe to parallelize by
giving each operator replica a disjoint partition of the key
domain.

• Selectivity of at most one: As mentioned before, se-
lectivity is the number of output tuples per input tuple.
Requiring selectivity  1 enables the runtime to imple-
ment ordering with a simple sequence number scheme.
Note that unlike synchronous data flow [16], SPL sup-
ports dynamic selectivity. For example, a filtering oper-
ator can have data-dependent predicates where it drops
some tuples, but forwards others. Such an operator has a
selectivity of  1, as the consumption to production ratio
is 1 : [0, 1].

• At most one predecessor and successor: The operator
instance must have fan-in and fan-out  1. This means
parallel regions have a single entry and exit where the
runtime can implement ordering.

The conditions for forming larger parallel regions with mul-
tiple operator instances are:

• Compatible keys: If there are multiple stateful operator
instances in the region, their keys must be compatible.
A key is a set of attributes, and keys are compatible if
their intersection is non-empty. Parallel regions are not
required to have the exact same partitioning as the oper-
ators they contain so long as the region’s partitioning key
is formed from attributes that all operators in the region
are also partitioned on. In other words, the partitioning



cannot degenerate to the empty key, where there is only
a single partition. It is safe to use a coarser partition-
ing at the parallel region level because it acts as first-level
routing. The operators themselves can still be partitioned
on a finer grained key, and that finer grained routing will
happen inside the operator itself.

• Forwarded keys: Care must be taken that the region
key as seen by a stateful operator instance o indeed has
the same value as at the start of the parallel region. This
is because the split at the start of the region uses the
key to route tuples, whereas o uses the key to access its
partitioned state map. All operator instances along the
way from the split to o must forward the key unchanged.
In other words, they must copy the attributes of the region
key unmodified from input tuples to output tuples.

• Region-local fusion dependencies: SPL programmers
can influence fusion decisions with pragmas. If the prag-
mas require two operator instances to be fused into the
same PE, and one of them is in a parallel region, the other
one must be in the same parallel region. This ensures that
the PE replicas after expansion can be placed on di↵erent
hosts of the cluster.

3.2 Compiler Analysis
This section describes how the compiler establishes the

safety conditions from the previous section. We must first
distinguish an operator definition from an operator invoca-
tion. The operator definition is a template, such as an Ag-
gregate operator. It provides di↵erent configuration options,
such as what window to aggregate over or which function
(Count, Avg, etc.) to use. Since users have domain-specific
code written in C++ or Java, we support user-defined oper-
ators that encapsulate such code. Each operator definition
comes with an operator model describing its configuration
options to the compiler. The operator invocation is written
in SPL and configures a specific instance of the operator, as
shown in Figure 1. The operator instance is a vertex in the
stream graph.

We take a two-pronged approach to establishing safety
conditions: program analysis for operator invocations in SPL,
and properties in the operator model for operator definitions.
This is a pragmatic approach, and requires some trust: if the
author of the operator deceives the compiler by using the
wrong properties in the operator model, then our optimiza-
tion may be unsafe. This situation is analogous to what
happens in other multi-lingual systems. For instance, the
Java keyword final is a property that makes a field of an ob-
ject immutable. However, the author of the Java code may
be lying, and actually modify the field through C++ code.
The Java compiler cannot detect this. By correctly model-
ing standard library operators, and choosing safe defaults for
new operators that can then be overridden by their authors,
we discharge our part of the responsibility for safety.

The following flags in the operator model support auto-
parallelization. The default for each is Unknown.

• state 2 {Stateless,ParameterPartitionBy,Unknown}.
In the ParameterPartitionBy case, the partitionBy parame-
ter in the operator invocation specifies the key.

• selectivity 2 {ExactlyOne,NoParamFilter,AtMostOne,
Unknown}.

In the NoParamFilter case, the selectivity is = 1 if the op-
erator invocation specifies no filter parameter, and  1

otherwise. (In SPL, filter parameters are optional predi-
cates which determine if the operator will drop a tuple, or
send it downstream.) Using consumption to production
ratios, a selectivity of = 1 is 1 : 1,  1 is 1 : [0, 1] and
Unknown is 1 : [0,1).

• forwarding 2 {Always,FunctionAny,Unknown}.
In the Always case, all attributes are forwarded unless the
operator invocation explicitly changes or drops them. The
FunctionAny case is used for aggregate operators, which
forward only attributes that use an Any function in the
operator invocation.

In most cases, analyzing an SPL operator invocation is
straightforward given its operator model. However, oper-
ator invocations can also contain imperative code, which
may a↵ect safety conditions. State can be a↵ected by mu-
tating expressions such as n++ or foo(n), if function foo
modifies its parameter or is otherwise stateful. SPL’s type
system supports the analysis by making parameter muta-
bility and statefulness of functions explicit [13]. Selectivity
can be a↵ected if the operator invocation calls submit to
send tuples to output streams. Our compiler uses data-flow
analysis to count submit-calls. If submit-calls appear inside
of if -statements, the analysis computes the minimum and
maximum selectivity along each path. If submit-calls appear
in loops, the analysis assumes that selectivity is Unknown.

3.3 Parallel Region Formation
After the compiler analyzes all operator instances to de-

termine the properties that a↵ect safety, it forms parallel
regions. In general, there is an exponential number of pos-
sible choices, so we employ a simple heuristic to pick one.
This leads to a faster algorithm and more predictable results
for users.

Our heuristic is to always form regions left-to-right. In
other words, the compiler starts parallel regions as close to
sources as possible, and keeps adding operator instances as
long as all safety conditions are satisfied. This is motivated
by the observation that in practice, more operators are se-
lective than prolific, since streaming applications tend to re-
duce the data volume early to reduce overall cost [26]. Fur-
thermore, our policy of only parallelizing operator instances
with selectivity  1 ensures that the number of tuples in a
region shrinks from left to right. Therefore, our left-to-right
heuristic minimizes the number of tuples traveling across
region boundaries, where they incur split or merge costs.
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o1 

o9 
k 

o10 
k,l 

o2 

o11 
l 

o5 o6 
k 

Figure 5: Parallel region formation example. Operator instances
labeled“n.p.” are not parallelizable, for example, due to unknown
state or selectivity> 1. The letters k and l indicate key attributes.
The dotted line from o12 to o14 indicates a fusion dependency.
Dashed ovals indicate unexpanded parallel regions as in Figure 2.
The paper icons in the lower right of an operator indicate the
operator is stateful.

The example stream graph in Figure 5 illustrates our al-
gorithm. The first parallel region contains just o1, since its
successor o8 violates the fan-in = 1 condition. Similarly, the
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Figure 4: Merge ordering mechanisms after receiving a new tuple.

next region contains just o2, since its successor o3 is “n.p.”
(not parallelizable). Operator instances o5 and o6 are com-
bined in a single region, since o5 is stateless and o6 has state
partitioned by key {k}. The region with o9 and o10 ends be-
fore o11, because adding o11 would lead to an empty region
key. This illustrates our left-to-right heuristic: another safe
alternative would have been to combine o10 with o11 instead
of o9. Finally, o12 is not in a parallel region, because it has a
fusion dependency with o14. (Recall that programmers can
request that multiple operators be fused together into one
PE.) That means they would have to be in the same paral-
lel region, but o13 is in the way and violates the fan-in = 1
condition.

3.4 Implementation Strategy Selection
Besides deciding which operator instances belong to which

parallel region, the compiler also decides the implementation
strategy for each parallel region. We refer to the single entry
and single exit of a region as the first joint and last joint,
respectively. The first joint can be a parallel source, split,
or shu✏e. Likewise, the last joint can be a parallel sink,
merge, or shu✏e. The compiler decides the joint types, as
well as their implementation strategies. Later, the runtime
picks up these decisions and enforces them.
Our region formation algorithm keeps track of the region

key and overall selectivity as it incrementally adds operator
instances to the region. When it is done forming a region,
the compiler uses the key to pick a tuple-routing strategy
(for example, hashing), and it uses the selectivity to pick an
ordering strategy (for example, round-robin). After region
formation, the compiler inserts shu✏es between each pair of
adjacent parallel regions, and adjusts their joint types and
ordering strategies accordingly.

4. RUNTIME
The runtime has two primary tasks: route tuples to par-

allel channels, and enforce tuple ordering. Parallel regions
should be semantically equivalent to their sequential coun-
terparts. In a streaming context, that equivalence is main-
tained by ensuring that the same tuples leave parallel re-
gions in the same order regardless of the number of parallel
channels.
The distributed nature of our runtime—PEs can run on

separate hosts—has influenced every design decision. We
favored a design which does not add out-of-band commu-
nication between PEs. Instead, we either attach the extra
information the runtime needs for parallelization to the tu-
ples themselves, or add it to the stream.

4.1 Splitters and Mergers
Routing and ordering are achieved through the same mech-

anisms: splitters and mergers in the PEs at the edges of par-
allel regions (as shown in Figure 3). Splitters exist on the
output ports of the last PE before the parallel region. Their

= 1  1 unknown
no state round-robin seqno & pulses n/a

partitioned state seqno seqno & pulses n/a
unknown state n/a n/a n/a

Table 1: Ordering strategies determined by state and selectivity.
Entries marked n/a are not parallelized.

job is to route tuples to the appropriate parallel channel,
and add any information needed to maintain proper tuple
ordering. Mergers exist on the input ports of the first PE
after the parallel region. Their job is to take all of the dif-
ferent streams from each parallel channel and merge those
tuples into one, well-ordered output stream. The splitter
and merger must perform their jobs invisibly to the opera-
tors both inside and outside the parallel region.

4.2 Routing
When parallel regions only have stateless operators, the

splitters route tuples in round-robin fashion, regardless of
the ordering strategy. When parallel regions have parti-
tioned state, the splitter uses all of the attributes that define
the partition key to compute a hash value. That hash value
is then used to route the tuple, ensuring that the same at-
tribute values are always routed to the same operators.

4.3 Ordering
There are three di↵erent ordering strategies: round-robin,

sequence numbers, and sequence numbers and pulses. The
situations in which the three strategies must be employed
depend on the presence of state and the region’s selectivity,
as shown in Table 1.

Internally, all kinds of mergers maintain queues for each
channel. PEs work on a push, not a pull basis. So a PE
will likely receive many tuples from a channel, even though
the merger is probably not yet ready to send those tuples
downstream. The queues exist so that the merger can accept
tuples from the transport layer, and then later pop them o↵
of the queues as dictated by their ordering strategy.

In fact, all of the merging strategies follow the same al-
gorithm when they receive a tuple. Upon receiving a tuple
from the transport layer, the merge places that tuple into
the appropriate queue. It then attempts to drain the queues
as much as possible based on the status of the queues and
its ordering strategy. All of the tuples in each queue are
ordered. If a tuple appears ahead of another tuple in the
same channel queue, then we know that it must be submit-
ted downstream first. Mergers, then, are actually perform-
ing a merge across ordered sources. Several of the ordering
strategies take advantage of this fact.

4.3.1 Round-Robin

The simplest ordering strategy is round-robin, and it can
only be employed with parallel regions that have stateless
operators with a selectivity of 1. Because there is no state,



the splitter has the freedom to route any tuple to any parallel
channel. On the other end, the merger can exploit the fact
that there will always be an output tuple for every input
tuple. Tuple ordering can be preserved by enforcing that
the merger pops tuples from the channel queues in the same
order that the splitter sends them.

The left side of Figure 4 shows an example of a round-
robin merge. The merger has just received a tuple on chan-
nel 1. Channel 1 is next in the round-robin order, so the
merger will submit the tuple on channel 1. It will also sub-
mit the front tuples on 2 and 0, and will once again wait
on 1.

4.3.2 Sequence Numbers

The second ordering strategy is sequence numbers, where
the splitter adds a sequence number to each outgoing tuple.
The PE runtime inside of each parallel channel is responsible
for ensuring that sequence numbers are preserved; if a tuple
with sequence number x is the cause of an operator sending
a tuple, the resulting tuple must also carry x as its sequence
number. When tuples have sequence numbers, the merger’s
job is to submit tuples downstream in sequential order.

The merger maintains order by keeping track of the se-
quence number of the last tuple it submitted. If that se-
quence number is y, then it knows that the next tuple to
be submitted must be y + 1; this condition holds because
sequence numbers without pulses are used only when the
selectivity is 1. The merger also maintains a minimum-heap
of the head of each channel queue. The top of the heap
is the tuple with the lowest sequence number across all of
the channel queues; it is the best candidate to be submit-
ted. We call this heap the next-heap. Using a heap ensures
that obtaining the next tuple to submit (as required dur-
ing a drain) is a logN operation where N is the number of
incoming channels.

The middle of Figure 4 shows an example of a sequence
number merge which has just received a tuple on channel 1.
The merger uses the next-heap to keep track of the lowest
sequence number across all channel queues. In this instance,
it knows that last = 4, so the next tuple to be submitted
must be 5. The top of the next-heap is 5, so it is submitted.
Tuples 6 and 7 are also drained from their queues, and the
merger is then waiting for 8.

4.3.3 Sequence Numbers and Pulses

The most general strategy is sequence numbers and pulses,
which permits operators with selectivity less than 1, mean-
ing they may drop tuples. In that case, if the last tuple to be
submitted was y, the merger cannot wait until y + 1 shows
up—it may never come. But the merger cannot simply use
a timeout either, because the channel that y+1 would come
in on may simply be slow. The merger must handle a clas-
sic problem in distributed systems: discriminating between
something that is gone, and something that is merely slow.
Pulses solve this problem. The splitter periodically sends

a pulse on all channels, and the length of this period is an
epoch. Each pulse receives the same sequence number, and
pulses are merged along with tuples. Operators in parallel
channels forward pulses regardless of their selectivity; even
an operator that drops all tuples will still forward pulses.
The presence of pulses guarantees that the merger will

receive information on all incoming channels at least once
per epoch. The merger uses pulses and the fact that all

tuples and pulses come in sequential order on a channel to
infer when a tuple has been dropped. In addition to the
next-heap, the merger maintains an additional minimum-
heap of the tuples last seen on each channel, which are the
backs of the channel queues. This heap keeps track of the
minimum of the maximums; the back of each channel queue
is the highest sequence number seen on that channel, and
the top of this heap is the minimum of those. We call this
heap the seen-heap. Using a heap ensures that finding the
min-of-the-maxes is a logN operation.

Consider the arrival of the tuple with sequence number z.
As in the sequence number case, if z � 1 = last where last
is the sequence number of the tuple submitted last, then z

is ready to be submitted. If that is not the case, we may
still submit z if we have enough information to infer that
tuple z � 1 has been dropped. The top of the seen-heap
can provide that information: if z� 1 is less than the top of
the seen-heap, then we know for certain that z � 1 is never
coming. Recall that the top of the seen-heap is the lowest
sequence number among the backs of the channel queues
(the min-of-the-maxes), and that the channel queues are in
sequential order. So we use the seen-heap to check the status
of all of the channels. And if z � 1 (the tuple that z must
wait on) is less than the backs of all of the channel queues,
then it is impossible for z � 1 to arrive on any channel.

The right of Figure 4 shows an example of a sequence
number and pulses merger that has just received a tuple on
channel 1. In addition to the next-heap, the merger uses
the seen-heap to track the lowest sequence number among
the backs of the queues. In this instance, last = 4, so the
merger needs to either see 5 or be able to conclude it is
never coming. After 8 arrives on channel 1 and becomes the
top of the seen-heap, the merger is able to conclude that
5 is never coming—the top of the seen-heap is the lowest
sequence number of the backs of the queues, and 5 < 8. The
merger then submits 6, and it also has enough information
to submit 8. It cannot submit 10 because it does not have
enough information to determine if 9 has been dropped.

4.4 Shuffles
When the compiler forms parallel regions (Section 3.3),

it aggressively tries to merge adjacent regions. Adjacent
parallel regions that are not merged are sequential bottle-
necks. When possible, the compiler merges parallel regions
by simply removing adjacent mergers and splitters. Sec-
tion 3.1 lists the safety conditions for when merging parallel
regions is possible. However, when adjacent parallel regions
have incompatible keys, they cannot be merged. Instead,
the compiler inserts a shu✏e: all channels of the left par-
allel region end with a split, and all channels of the right
parallel region begin with a merge. Shu✏es preserve safety
while avoiding a sequential bottleneck.

In principle, shu✏es are just splits and merges at the edges
of adjacent parallel regions. However, splits and merges in a
shu✏e modify their default behavior, as shown in Figure 7.

Ordinary splitters have both routing and ordering respon-
sibilities. The ordering responsibility for an ordinary splitter
is to create and attach sequence numbers (if needed) to each
outgoing tuple. When tuples arrive at a splitter in a shu✏e,
those tuples already have sequence numbers. The PE itself
preserves sequence numbers, so a splitter in a shu✏e only
has routing responsibilities. Splitters inside of a shu✏e also



Figure 6: Scalability benchmarks.
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Figure 7: Splitter and merger responsibilities in a shu✏e.

do not generate pulses; they were already generated by the
splitter at the beginning of the parallel region.

When mergers exist at the edge of parallel regions, they
are responsible for stripping o↵ the sequence numbers from
tuples and dropping pulses. Mergers that are a part of a
shu✏e must preserve sequence numbers and pulses. But
they cannot do so naively, since mergers inside of a shu✏e
will actually receive N copies of every pulse, where N is the
number of parallel channels. The split before them has to
forward each pulse it receives to all of the mergers in the
shu✏e, meaning that each merger will receive a copy of each
pulse. The merger prevents this problem from exploding by
ensuring that only one copy of each pulse is fowarded on
through the channel. If the merger did not drop duplicated
pulses, then the number of pulses that arrived at the final
merger would be on the order of Ns where s is the number
of stages connected by shu✏es.

5. RESULTS
We use three classes of benchmarks. The scalability bench-

marks are designed to show that simple graphs with data
parallelism will scale using our techniques. Our microbench-
marks are designed to measure the overhead of runtime
mechanisms that are necessary to ensure correct ordering.
Finally, we use five application kernels to show that our
techniques can improve the performance of stream graphs
inspired by real applications.

All of our experiments were performed on machines with
2 Intel Xeon processors where each processor has 4 cores. In
total, each machine has 8 cores and 64 GB of memory.

Our Large-scale experiment uses 112 cores across 14 ma-
chines. The large-scale experiments demonstrate the inher-
ent scalability of our runtime, and indicate that the linear
trends seen in the other experiments are likely to continue.
The remainder of our experiments use 4 machines connected
with Infiniband.

We vary the amount of work per tuple on the x-axis, where
work is the number of integer multiplications performed per
tuple. We scale this exponentially so that we can explore
how our system behaves with both very cheap and very ex-

pensive tuples. When there is little work per tuple, scal-
ability will be more di�cult to achieve because the paral-
lelization overhead will be significant compared to the actual
work. Hence, the low end of the spectrum—the left side of
the x-axis—is more sensitive to the runtime parallelization
overheads. The high end of the spectrum—the right side of
the x-axis—shows the scalability that is possible when there
is su�cient work.

All data points in our experiments represent the average
of at least three runs, with error bars showing the standard
deviation.

5.1 Scalability Benchmarks
The scalability benchmarks, Figure 6, demonstrate our

runtime’s scalability across a wider range of parallel chan-
nels. These experiments use 4 machines (32 cores). When
there is a small amount of work per tuple (left side of the x-
axis), these experiments also show how sensitive the runtime
is to having more active parallel channels than exploitable
parallelism.

The Stateless scalability experiment has a stream graph
with a single stateless operator inside of a parallel region.
Because the operator in the parallel region is stateless, the
compiler recognizes that the runtime can use the least ex-
pensive ordering strategy, round-robin. Hence, we observe
linear scalability, up to 32 times the sequential case when
32 parallel channels are used with 32 cores available. Just
as importantly, when there is very little work—when the
amount of work to be done is closer to the parallelization
cost—additional parallel channels do not harm performance.

The stream graph is the same for the Stateful scalabil-
ity experiment, but the operator is an aggregator that has
local state. The compiler instructs the runtime to use se-
quence numbers and pulses to ensure proper ordering. The
scalability is linear for 2–16 parallel channels, and achieves
31.3 times the sequential case for 32 parallel channels when
using 32 cores. However, all cases see some performance
improvement with very inexpensive work, with all but the
32-channel cases never dropping below 2 times improvement.
The 32-channel case never has less than 1.4 time improve-
ment for very inexpensive work. This result indicates that
our runtime has little overhead. Note that in the Stateful
experiment, inexpensive work exhibits more than 2 times
improvement for 1–8 channels, which is not the case with
the Stateless experiment. Even though the per-tuple cost is
the same for both experiments, the aggregation itself adds
a fixed cost. Hence, operators in the Stateful experiment
do more work than operators in the Stateless experiment.



Figure 8: Microbenchmarks.
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Figure 9: Expanded stream graph for a two-way shu✏e.

Very inexpensive work in the Stateful experiment is benefit-
ing from both pipeline and data parallelism.

Figure 9 shows the stream graph for the Shu✏e experi-
ment, which has two aggregations partitioned on di↵erent
keys, requiring a shu✏e between them. When there are 32
channels in the Shu✏e experiment, there are actually 64
processes running on 32 cores. Hence, the 32-channel case is
an over-subscribed system by a factor of 2, and it only scales
to 22.6 times. The 16-channel case has 32 PEs, which is a
fully subscribed system, and it scales to 15.3 times. As with
the Stateful experiment, the inexpensive end of the work
spectrum benefits from pipeline as well as data parallelism,
achieving over 2 times improvement for 4–32 channels.

Note that the e↵ect of pipeline parallelism for low tuple
costs is least pronounced in the Stateless experiment, and
most pronounced in Shu✏e. In the sequential case with low-
tuple costs, the one PE worker is the bottleneck; it must
receive, process, and send tuples. The splitter only sends
tuples. As the number of parallel channels increases, the
work on each worker PE decreases, making the splitter the
bottleneck. The more costly the work is, the stronger the
e↵ect becomes, which is why it is weakest in the Stateless
experiment and strongest in the Shu✏e experiment.

The Large-scale experiment in Figure 10 demonstrates the
scalability the runtime system is able to achieve with a large
number of cores across many machines. This experiment
uses a total of 14 machines. One machine (8 cores) is ded-
icated to the source and sink, which includes the split and
merge at the edges of the parallel region. The other 13
machines (104 cores) are dedicated to the PEs in the par-




Figure 10: Large-scale scalability.

allel region. The stream graph for the stateful experiment
is a single, stateful aggregation in a parallel region with 100
parallel channels. The stateful experiment shows near linear
scalability, maxing out at 93 times improvement.

The shu✏e experiment in Figure 10 has the same stream
graph as shown in Figure 9. As explained with the Shu✏e
experiment, there are twice as many processes as parallel
channels. When there are 50 parallel channels in each of its
two parallel regions, it maxes out at 42 times improvement.
The shu✏e experiment cannot scale as high as the stateful
experiment because with 50 parallel channels, there are 100
PEs.

5.2 Microbenchmarks
All of the microbenchmarks are shown in Figure 8. The

stream graph for all of the microbenchmarks is a parallel
region with a single stateless operator.

The Time & Rate benchmark shows the relationship be-
tween the amount of work done and the time it takes to
do that work. For all our of results, we characterize the
work done in the number of multiplications performed per
tuple. This experiment maps those multiplications to both
an elapsed time (left y-axis) and a processing rate (right



y-axis). The elapsed time range is from 600 nanoseconds
to 1 millisecond, and the processing rate is from 1.6 mil-
lion tuples a second to one thousand tuples a second. This
cost experiment is a “calibration” experiment that shows the
relationship between the amount of work done, the time it
takes to do that work, and the throughput on all of our other
experiments.

As described in Section 4.3, adding sequence numbers to
tuples and inserting pulses on all channels will incur some
overhead. We measured this overhead in Figure 8, using
pure round-robin ordering as the baseline. As expected, as
the work-per-tuple increases, the cost of adding a sequence
number to each tuple becomes negligible compared to the
actual work done. However, even when relatively little work
is done, the highest average overhead is only 12%. Pulses
add more overhead, but never more than 21%. As with
sequence numbers alone, the overhead goes towards zero as
the cost of the work increases.

Epochs, as explained in Section 4.3, are the number of tu-
ples on each channel between generating pulses on all chan-
nels. The Epoch experiment in Figure 8 measures how sen-
sitive performance is to the epoch length. An epoch of e

means that the splitter will send eN tuples, where N is the
total number of channels, before generating a pulse on each
channel. We scale the epoch with the number of channels to
ensure that each channel receives e tuples before it receives
a single pulse. The default epoch is e = 10. Our results
show that beyond an epoch length of 8, speedup does not
vary more than 8% in the range 8–32.

In the Selectivity experiment, we fixed the number of par-
allel channels at 32. Each line in the graph represents a
progressively more selective aggregator. So, when selectiv-
ity is 1:1, the operator performs an aggregation for every
tuple it receives. When selectivity is 1:256, it performs 1
aggregation for every 256 tuples it receives. When per-tuple
cost is low, and the selectivity increases, the worker PEs do
very little actual work; they mostly receive tuples. However,
the cost for the splitter remains constant, as it always has
32 channels. When selectivity is high, the splitter is paying
the cost to split to 32 channels, but there is no benefit to
doing so, since real work is actually a rare event. As a result,
as selectivity increases, there is actually slowdown until the
cost of processing one of the selected tuples become large.

5.3 Application Kernels
This section further explores performance using five real-

world application kernels shown in Figure 11. All of these
application kernels have selective or stateful parallel regions,
which require the techniques presented in this paper to be
parallelized. They are representative of big data use cases.
The Network monitoring kernel monitors multiple servers,

looking for suspicious user behavior. The filters remove val-
ues below a “suspicious” threshold. The left parallel region
is partitioned by the server, while the right parallel region
is partitioned by users, with a shu✏e in the middle. Note,
however, that because there are parallel sources on the left
and parallel sinks on the right, tuples are not ordered in this
application. The compiler recognizes this and informs the
runtime that it has only routing responsibilities.
The PageRank kernel uses a feedback loop to iteratively

rank pages in a web graph [18]. This application is typically
associated with MapReduce, but is also easy to express in
a streaming language. Each iteration multiplies the rank
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Figure 11: Stream graphs for the application kernels.

operators
Network Left 33 µs Right 23 µs

PageRank MulAdd 11 s

Twitter NLP NLP 103 µs

Twitter CEP Parse 140 µs Match 3.5 ms

Finance Vwap 81 µs Project 26 µs Bargains 2.5 µs

Table 2: Average processing time per tuple.

vector with the web graph adjacency matrix. In the first
iteration, MulAdd reads the graph from disk. Each iteration
uses the parallel channels of MulAdd to multiply the previous
rank vector with some rows of the matrix, and uses Add
to assemble the next rank vector. The input consists of a
synthetic graph of 2 million vertices with a sparsity of 0.001,
in other words, 4 billion uniformly distributed edges.

The Twitter NLP kernel uses a natural language process-
ing engine [5] to analyze tweets. The input is a stream of
tweet contents as strings, and the output is a tuple contain-
ing a list of the words used in the message, a list with the
lengths of the words, and the average length of the words.
The stream graph has a parallel region with a single, state-
less, operator. The NLP engine is implemented in Java, so
tuples that enter the NLP operator must be serialized, copied
into the JVM, processed, then deserialized and copied out
from the JVM.

The Twitter CEP kernel uses complex event processing to
detect patterns across sequences of tweets [12]. The Parse
operator turns an XML tweet into a tuple with author,
contents, and timestamp. The Match operator detects se-
quences of five consecutive tweets by the same author with
identical hash-tags. This pattern is a pathological case for
this input stream, which causes the finite state machine
that implements the pattern matching to generate and check
many partial matches for most tuples. Both Parse andMatch
are parallelized, with a shu✏e to partition by author before
Match. The topology is similar to that of the Network mon-
itoring kernel, but since there is no parallel source or sink,
ordering matters.

The Finance kernel detects bargains when a quote exceeds
the VWAP (volume-weighted average price) of its stock sym-
bol. The graph has three parallelizable operators. Only the
Combine operator, which merges its two input streams in
timestamp order, is not parallel.

Figure 12 shows the parallel speedups of the five applica-
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Figure 12: Performance results for the application kernels.

tion kernels on a cluster of 4 machines with 8 cores each, for
a total of 32 cores. In these experiments, all parallel regions
are replicated to the same number of parallel channels. For
example, when the number of channels is 32, Twitter CEP
has a total of 64 operator instances, thus over-subscribing
the cores. Most of the kernels have near-perfect scaling up
to 8 channels. The exception is Finance, which tops out at
a speedup of 3.2⇥ with 4 channels, at which point the Com-
bine operator becomes the bottleneck. The other application
kernels scale well, topping out at either 16 or 32 channels,
with speedups between 11.4⇥ and 21.1⇥ over sequential.

Table 2 shows the average time it takes for all operators in
parallel regions to process tuples. Combining this data with
the Time & Rate experiment in Figure 8 allows us to cali-
brate the application kernels to the scalability benchmarks
in Figure 6. Note, however, that this is a rough calibration,
as the integer multiplications in the microbenchmarks occur
in a tight loop, operating on a register. The average timings
in Table 2 will include a mix of integer and floating point
operations that could potentially include cache misses and
branch mispredictions.

6. RELATED WORK
Table 3 compares this paper to prior work on data-parallel

streaming. Stateful indicates whether the parallelizer can
handle stateful operators, which are necessary for aggre-
gation, enrichment, and detecting composite events across
sequences of tuples. Dynamic indicates whether the paral-
lelizer can handle operators with dynamic selectivity, which
are necessary for data-dependent filtering, compression, and
time-based windows. Safety indicates whether the paral-
lelizer guarantees that the order of tuples in the output
stream is the same as without parallelization, which is nec-
essary for deterministic applications and simplifies testing
and accountability. Finally, Scaling indicates the maximum
number of cores for which results were reported. Our work
is the first that is both general (with respect to state and dy-
namism) and safe. Furthermore, our paper includes results
for scaling further than prior stream-processing papers.

The compiler for the StreamIt language auto-parallelizes
operators using round-robin to guarantee ordering [10]. The
StreamIt language supports stateful and dynamic operators,
but the StreamIt auto-parallelization technique only works
for operators that are stateless and have static selectivity.
We treat it as a special case of our more general framework,
which also supports stateful operators and dynamic selec-
tivity. Furthermore, unlike StreamIt, we support more gen-

Auto-parallel Generality Safety Scaling
streaming system Stateful Dynamic Order #Cores
StreamIt [10] no no yes 64

PS-DSWP [21] no no yes 6

Brito et al. [3] yes no yes 8

Elastic operators [22] no yes no 16

S4 [17] yes yes no 64

This paper yes yes yes 100

Table 3: Comparison to prior work on parallel streaming.

eral topologies that eliminate bottle-necks, including parallel
sources, shu✏es, and parallel sinks.

To achieve our scaling results for stateful operators, we
adapt an idea from distributed databases [9, 11]: we parti-
tion the state by keys. This same technique is also the main
factor in the success of the MapReduce [8] and Dryad [14]
batch processing systems. However, unlike parallel databases,
MapReduce, and Dryad, our approach works in a streaming
context. This required us to invent novel techniques for en-
forcing output ordering. For instance, MapReduce uses a
batch sorting stage for output ordering, but that is not an
option in a streaming system. Furthermore, whereas parallel
databases rely on relational algebra to guarantee that data
parallelism is safe, MapReduce and Dryad leave this up to
the programmer. Our system, on the other hand, uses static
analysis to infer su�cient safety preconditions.

There are several e↵orts, including Hive [25], Pig [20]
and FlumeJava [4], that provide higher-level abstractions for
MapReduce. These projects provide a programming model
that abstracts away the details of using a high performance,
distributed system. Since these languages and libraries are
abstractions for MapReduce, they do not work in a stream-
ing context, and do not have the ordering guarantees that
our system does.

There has been prior work on making batch data process-
ing systems more incremental. MapReduce Online reports
approximate results early, and increases accuracy later [7].
The Percolator allows observers to trigger when intermediate
results are ready [19]. Unlike these hybrid systems, which
still experience high latencies, our system is fully streaming.

Storm is an open-source project for distributed stream
computing [24]. The programming model is similar to ours—
programmers implement asynchronous bolts which can have
dynamic selectivity. Developers can achieve data parallelism
on any bolt by requesting multiple copies of it. However,
such data parallelism does not enforce sequential semantics;
safety is left entirely to the developers. S4 is another open-
source streaming system [17], which was inspired by both
MapReduce and the foundational work behind System S [1].
In S4, the runtime creates replica PEs at runtime for each
new instance of a key value. Creating replica PEs enables
data parallelism, but S4 has no mechanisms to enforce tuple
ordering. Again, safety is left to developers.

There are extensions to the prior work on data-flow par-
allelization that are complementary to our work. River per-
forms load-balancing for parallel flows [2], and Flux supports
fault-tolerance for parallel flows [23]. Both River and Flux
focus on batch systems, and both leave safety to the user.
Elastic operators [22] and flexible filters [6] adapt the de-
gree of parallelism dynamically, but do not address stateful
operators in a distributed system or safey analysis. Finally,
Brito et al. describes how to parallelize stateful operators
with STM (software transactional memory) [3], but only if
memory is shared and operator selectivity is exactly one.



7. CONCLUSIONS
We have presented a compiler and runtime system that are

capable of automatically extracting data parallelism from
streaming applications. Our work di↵ers from prior work
by being able to extract such parallelism with safety guar-
antees in the presence of operators that can be stateful, se-
lective, and user-defined. We have demonstrated that these
techniques can scale with available resources and exploitable
parallelism. The result is a programming model in which de-
velopers can naturally express task and pipeline parallelism,
and let the compiler and runtime automatically exploit data
parallelism.
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