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optimization effort. Multicore processors based on coher-
ent hardware-managed caches provide the abstraction 
of a single shared address space. This abstraction frees 
programmers from having to explicitly manage data as 
it moves through the memory hierarchy and between 
cores. The hardware automatically synchronizes data 
in main memory and across the caches in each core so 
that all cores have a consistent view of shared memory. 
In contrast, software-managed local memories introduce 
disjoint address spaces that programmers are responsible 
for keeping consistent. Because programmers must explic-
itly manage data locality, they can decide when to place 
data in local memories, what data to replace, and what the 
data layout is in local memories, which can differ from the 
layout of data in off-chip DRAM.5

We used the Cell Broadband Engine processor as an 
experimental testbed to analyze support for expressing 
parallelism and locality in programming models for mul-
tiprocessors with EMM hierarchies. We implemented two 
applications using three programming models of vary-
ing complexity to explore abstractions for specifying the 
working sets of parallel tasks, controlling task granularity, 
and scheduling data transfers to and from local memo-
ries. The two scientific parallel applications, PBPI6 and 
Fixedgrid,7 stress both computational power and memory 
bandwidth.

M
ulticore processors with explicitly managed 
memory (EMM) hierarchies originated in 
the domain of games and graphics1,2 and 
are now emerging as general-purpose 
high-end computing platforms. More 

recently, processor vendors for mainstream computing 
markets such as Intel and AMD have introduced simi-
lar designs.3 All of these processors have data-parallel 
components as accelerators. This acceleration is achieved 
through multiple scalar or single-instruction, multiple-
data (SIMD) cores, high on-chip bandwidth, and explicit 
data transfers between fast local memories and external 
dynamic RAM (DRAM). Explicit data transfers enable pro-
grammers to use optimal caching policies and multiple 
streaming data buffers that allow overlapping computa-
tion with data transfer latency.4

Managing data locality in EMM multicore processors 
requires tradeoffs in performance, code complexity, and 

A study of two applications programmed 
using three models of varying complexity 
reveals that implicit management of local-
ity can produce code with performance 
comparable to code generated from explic-
it management of locality.

Scott Schneider and Jae-Seung Yeom, Virginia Tech

Dimitrios S. Nikolopoulos, FORTH-ICS and University of Crete 

Programming 
Multiprocessors 
with Explicitly 
Managed Memory 
Hierarchies



43DECEMBER 2009

The limited amount of data that can fit into the local 
store requires streaming for good performance. Program-
mers must be able to anticipate what data they will need 
for future computations and initiate DMAs for this data 
while the other data is in use for computation. Over-
lapping computation and communication can hide the 
latency associated with DMAs, a necessity for sustained 
performance.

Strided access
A single DMA only transfers contiguous data. The Cell 

has no architectural support for strided access to main 
memory, which is required for accessing, say, the col-
umns in a matrix that is stored in row-major format. 
To best transfer noncontiguous data to and from main 
memory, programmers must construct DMA lists. Each 
entry in a DMA list specifies a separate DMA, and pro-
grammers must ensure that the memory address for 
each subsequent entry in the list adheres to the stride 
they want.

Data alignment 
All DMAs of less than 16 bytes must be naturally 

aligned in both main memory and in the SPE’s local 
store—that is, transfers of 1, 2, 4, and 8 bytes must be 
aligned on a 1-, 2-, 4-, or 8-byte boundary, respectively. 
Transfers larger than or equal to 16 bytes must be aligned 
on a 16-byte boundary, but for best performance data 
should be aligned on a cache line (128 bytes).

In comparing implicit versus explicit pro-
gramming models for managing locality, 
we found that programming models with 
implicit locality management via compiler 
and runtime support can increase program-
mer productivity: Programmers write less 
code, maintain a high-level view of local-
ity, and rely more on the compiler and the 
runtime environment for parallelism and 
locality management. However, explicit 
management of locality is often necessary 
for performance optimization, and the 
explicit control of private address spaces 
enforced in some programming models 
helps in this direction.

Cell Programming Challenges
Figure 1 shows the Cell processor’s archi-

tecture. The power processing element (PPE) 
is a traditional PowerPC processor with hard-
ware-managed caches and vector processing 
extensions. The eight synergistic processing 
elements (SPEs) are 128-bit vector processors 
with software managed caches. The SPEs can 
communicate with one another over high-bandwidth 
buses, and the PPE and SPEs use the same buses to 
communicate with the memory interface controller. 
Compared to programming for homogeneous multicore 
processors and shared-memory symmetric multi- 
processors (SMPs), programming for the Cell presents 
several unique challenges.

Local memory spaces 
Effective use of the Cell requires offloading as much 

computation as possible to the SPEs. The difficulty of this 
requirement is that the SPEs are divorced from the normal 
memory hierarchy. Each SPE has a local static RAM (SRAM) 
store of 256 Kbytes, and this is the only memory it can 
directly address. Programmers must transfer data from 
main memory explicitly through direct memory accesses 
(DMAs). Consequently, they must know the memory access 
patterns in their application and move data in and out as 
needed.

Small local store 
The 256-Kbyte local store associated with each SPE 

contains all of the code and all of the data the SPE uses. 
Consequently, there is a tradeoff: The more code that is 
loaded into an SPE, the less data it can operate on. Because 
this space also contains stack frames, recursive functions 
are more limited in their depth of recursion than in an 
architecture with a conventional hardware-managed 
memory hierarchy.
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Figure 1. Cell processor architecture. The power processing element 
(PPE) is a traditional PowerPC core with hardware-managed caches and 
vector processing extensions. The synergistic processing elements (SPEs) 
have a programmer-controlled local store (LS) that communicates with 
the memory interface controller through the memory flow controller 
(MFC). 
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Cellgen 
Cellgen implements a programming model 

similar to OpenMP.9 Figure 2a shows an exam-
ple of Cellgen code taken from PBPI.

Programmers identify data-parallel sections 
of their code, then annotate these sections to 
mark them for parallel execution and data han-
dling. This model provides the abstraction of a 
shared-memory architecture and an indirect 
abstraction of data locality. While the parallel 
sections are annotated with their datasets, the 
code inside these regions is not; it is written 
in the same way it would be for a sequential 
program.

The programmer annotates the data as pri-
vate or shared, using the same keywords as in 
OpenMP. Private variables follow OpenMP se-
mantics: They are copied into local stores using 
DMAs, and each SPE gets a local copy of the 
variable. Shared variables are further classified 
using reference analysis as in, out, or I/O vari-
ables. This classification departs from OpenMP 
semantics and serves as the main vehicle for 
managing locality in the Cell. In data needs 
streaming into the SPE’s local store, out data 
needs streaming out of local stores, and I/O data 
needs streaming both in and out of local stores. 
Classification is transparent to the programmer 
and internal to the compiler. The Cellgen com-
piler and runtime system manages locality by 
triggering and dynamically scheduling the asso-
ciated data transfers. Note that the abstraction 
of shared memory is not implemented on top of 
a coherent software cache.10 The compiler and 
runtime system transparently manages coher-
ence and locality.

Streaming data is paramount for two rea-
sons: The local stores are small, so they can 
only contain a fraction of parallel task working 
sets, and the DMA latency is significant. Over-
lapping DMAs with computation is necessary 
to achieve high performance. Data classified 
by the compiler as in or out is streamed using 
double buffering, while I/O data is streamed 
using triple buffering. The number of states 
a variable can be in determines the depth of 
buffering. In data can be either simultaneously 
streaming in or computing; out data can be 

either simultaneously computing or streaming out; I/O 
data can be simultaneously streaming in, computing, or 
streaming out. The Cellgen compiler creates a buffer for 
each of these states. The goal is to maximize computation/
DMA overlap by having data in two (in and out) or three 
(I/O) states simultaneously.

Programming Models
Our study implemented two applications using two 

high-level programming models, Cellgen and Sequoia.8 
We contrasted these models with programming for the 
Cell directly using the IBM Software Development Toolkit 
(SDK) 3.0.

#pragma cell reduction(+: double | = lnL)
        private(double* freq = model->daStateFreqs, 
                int N4 = N / 4)
        shared(double* sroot = tree->root->siteLike,
               int* weight = g_ds.compressedWeight.v)
{
  int i;
  for (i = 0; i < N4; i++) {
    int j = i * 4;
    double temp;
    temp = sroot[j]*freq[0] + sroot[j+1]*freq[1] +
           sroot[j+2]*freq[2] + sroot[j+3]*freq[3];
    temp = log(temp);
    | +=  weight[i] * temp;
  }
}

(a)

void task<leaf> Sum::Leaf(in double A[L], 
                          inout double B[L])
{
  B[0] += A[0];
}

void task<inner> Likelihood::Inner(in double sroot[N],
 in double freq[M],in int weight[P], out double lnL[L])
{
  tunable T;
  mapreduce(unsigned int i = 0 : (N+T-1)/T) {
    Likelihood(sroot[i*T;T], freq[0;3],
               weight[i*T/4;T/4], reducearg<lnL,Sum>);
  }
}

void task<leaf> Likelihood::Leaf(in double sroot[N],
                   in double freq[M], in int weight[P],
                   inout double lnL[L])
{
  unsigned int i,j;
  double temp;

  for (i = 0; i < P; i++) {
    j = i * 4;
    temp = sroot[j] * freq[0] + sroot[j+1] * freq[1] +
           sroot[j+2] * freq[2] + sroot[j+3] * freq[3];
    temp = log(temp);
    lnL[0] += weight[i] * temp;
  }
}

(b)

Figure 2. Two examples of likelihood calculation code in PBPI: 
(a) Cellgen and (b) Sequoia.
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identify and schedule all data transfers. Further, program-
mers are solely responsible for synchronizing threads 
running on different cores, maintaining data coherency, 
aligning data, and setting up and sizing buffers to achieve 
computation/communication overlap. However, hand-
tuned parallelization also has well-known advantages: 
Programmers with insight into the parallel algorithm and 
the Cell architecture can maximize locality, eliminate un-
necessary data transfers, and optimally schedule data and 
computation on cores. 

Applications
For our analysis we used two scientific applications, 

Fixedgrid and PBPI.

Fixedgrid
Fixedgrid is an atmospheric modeling application that 

describes chemical transport via third-order upwind-bi-
ased advection discretization and second-order diffusion 
discretization.

To calculate mass flux in a 2D domain, Fixedgrid must 
calculate a two-component wind vector, horizontal dif-
fusion tensor, and concentrations for every species of 
interest. In a domain of N × M, the calculation’s com-
plexity is O(NM). To determine ozone concentrations in 
a 600 × 600 domain as in our experiments, Fixedgrid 
calculates approximately 25,920,000 double-precision 
values (24.7 Mbytes)—1,080,000 (8.24 Mbytes) at each 
time step. These calculations access noncontiguous data, 
which requires special handling on the SPEs in the form 
of DMA lists. Reordering the data on the PPE so that the 
SPE can access contiguous data is possible but hinders 
performance significantly.

PBPI 
PBPI is a parallel implementation of the Bayesian phylo-

genetic inference method, which constructs phylogenetic 
trees using a Markov-chain Monte-Carlo sampling method. 
On the Cell, calculation of the likelihood values (as shown 
in Figure 2) for each generation is distributed among all 
SPEs. Where N is the size of the data used in all calcula-
tions, all offloaded algorithms have complexity O(N).

Our experiments used a dataset of 107 taxa with 19,989 
nucleotides for a tree. Three computational loops are 
called for a total of 324,071 times and account for most of 
the program’s execution time. The first loop accounts for 

SPEs operate on independent loop iterations in parallel, 
as scheduled by Cellgen. It is the programmer’s responsibil-
ity to ensure that loop iterations are in fact independent, 
which is also the case in OpenMP.

Sequoia
The second class of programming models that we con-

sidered expresses parallelism through explicit task and 
data subdivision. A representative of this model is Sequoia, 
in which programmers construct trees of dependent tasks, 
with the inner tasks calling tasks further down the tree. 
Final computation occurs in leaf tasks. At each level, Se-
quoia decomposes the data and copies it to the child tasks 
as specified, which enforces the model that each task has a 
private address space. Figure 2b repeats the code example 
of Figure 2a using Sequoia.

Sequoia strictly enforces locality because tasks can only 
reference local data. In this manner, there is a direct map-
ping of tasks to the Cell architecture in which the SPE local 
storage is divorced from the memory hierarchy. By provid-
ing a programming model in which tasks operate on local 
data, and providing abstractions to subdivide data and pass 
it on to subtasks, Sequoia can abstract away the underlying 
architecture. Programmers explicitly define data and com-
putation subdivision through an architecture-independent 
notation. Using these definitions, the Sequoia compiler 
generates code for data subdivision and transfer for the 
specific architecture.

Comparing the two examples in Figure 2 shows that the 
same computation takes significantly less code to express 
using the Cellgen model. However, the current Cellgen 
model is designed for data-parallel computations. While 
programming with Sequoia takes more code, it provides 
a more expressive, general language. The tradeoff is that 
programming models with implicit locality management 
are more concise, but explicit models can solve a broader 
class of problems.

Cell SDK 
Cell SDK exposes Cell architectural details to program-

mers. It provides libraries for low-level, Pthread-style 
thread-based parallelization, and sets of DMA commands 
based on a get/put interface for managing data transfers.

Programming in Cell SDK is analogous to, if not harder 
than, programming with the message passing interface 
(MPI) or Pthreads on a typical cluster or multiprocessor. 
Cell SDK programmers must parallelize their program 
explicitly with threads, implement application-specific 
scheduling loops in each thread, and manually schedule 
all data transfers. Hence, programmers need a deep un-
derstanding of both thread-level parallelization and the 
Cell hardware.

While programming models can transparently manage 
data transfers, Cell SDK requires programmers to explicitly 

Programming models with implicit 
locality management are more 
concise, but explicit models can  
solve a broader class of problems.
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Fixedgrid 
Fixedgrid has two types of computational 

kernels: row and column discretization. The 
former requires row data from a contiguous 
region of memory, and the latter requires 
column data from a noncontiguous region 
of memory. For each time-step iteration, the 
application calls the former twice as much 
as the latter. The sequential implementa-
tion maintains a transposed copy of each 
matrix. The application copies the values 
of each transposed matrix as a whole from 
the original matrix before the column dis-
cretization kernel. After the computation, 
it copies the values back as a whole to the 
original matrix. 

Fixedgrid’s SDK3 implementations 
use DMA lists to transfer columns of data 
from matrices. DMA lists are the only 
mechanism that Cell provides to perform 
scatter/gather operations. Because DMA 
lists perform best when each list entry is 
at least 16 bytes, the SDK3 implementa-
tion transfers two columns at once. In the 
SIMD implementation, vector operations 
simultaneously work on the interleaved 
columns. Unlike the other Fixedgrid im-
plementations, the SDK3 implementation 
does not require column data to be reor-
dered on the PPE or SPE. 

The Cellgen and Sequoia versions do not 
support array-column accesses. Those implementations 
instead rearrange noncontiguous data by performing array 
transpositions on the PPE. Transposes introduce copying 
overhead on the PPE, as Figure 3a shows. 

Overall, we found that the lack of support for automatic 
generation of DMA scatter/gather operations is the key 
reason for the performance gap between the high-level 
programming models and the hand-tuned implementa-
tion of Fixedgrid.

PBPI
Applications with a fine granularity of parallelism are 

sensitive to the size and frequency of DMAs between the 
SPE and main memory. Because PBPI is such an applica-
tion, we experimented with different buffer sizes, as Figure 
4a shows.

The major factors that influence performance in 
all three cases are the computational kernel, which is 
either manually written or generated for the SPE; the 
overhead of DMA-related operations; SPE overheads 
imposed by the programming model runtime; and the 
overhead of signaling between PPE and SPE, as Figure 
4b shows. 

88 percent of the calls and requires 1.2 Mbytes to com-
pute a result of 0.6 Mbytes; the second loop accounts for 6 
percent of the calls and requires 1.8 Mbytes to compute a 
result of 0.6 Mbytes; and the third loop also accounts for 
6 percent of the calls and requires 0.6 Mbytes to compute 
a result of 8 bytes.

Performance Analysis
We compared the performance of each implementation 

of both applications, as shown in Figures 3 and 4. The ex-
perimental environment was a Sony PlayStation 3 running 
Linux with a 2.6.24 kernel and Cell SDK 3.0. On a PS3 run-
ning Linux, only six SPEs are available to user-land code. 
Each data point represents the best of 40 runs; we found 
this more reproducible and representative than the average.

The original SDK3 implementations have vectorized 
kernels. Because both Cellgen and Sequoia are primarily 
concerned with locality management, they do not produce 
SIMD code. However, autovectorization is not precluded 
by design or engineering considerations.11 To control for 
vectorization, we compared the Cellgen and Sequoia im-
plementations against SDK3 implementations with and 
without SIMD kernels.
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Figure 3. Fixedgrid implementation performance. (a) PPE timing profile. 
“PPE kernel” measures the time to complete each offloaded function. 
“Array copy” is the time spent on copying arrays from main memory for 
each discretization function. “PPE work” includes array initialization and 
file I/O time. (b) SPE timing profile. “SPE kernel” is the time spent on core 
computation excluding DMA and array copying overheads. “Array copy” 
is the time spent on copying arrays to SPE local store. “DMA wait” is data 
transfer time not overlapped with computation in addition to the time for 
checking for DMA completion. “DMA prepare” is the time to prepare DMA 
addresses and lists along with the time to queue DMA commands.
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O
ur study revealed that implicit management of 
locality can produce code with performance 
comparable to code generated from explicit 
management of locality. Generating such 
code requires adequate compiler and runtime 

support, but it also reduces the programming effort as 
measured by lines of code. 

Cellgen, a programming model that uses private/
shared data classification clauses as the sole mechanism 
for managing locality, demonstrates this point. The com-
piler and runtime system can be extended to integrate 
more scheduling algorithms—such as dynamic, inter-
leaved, or work stealing—to further the programmer’s 
task in managing granularity and scheduling. Neverthe-
less, tuning of data transfers by hand is still necessary 
for optimization of specific data access patterns, and 
models for which the programmer explicitly manages 
locality help in this regard. 

As expected, we found that programming models are 
sensitive to data transfer overheads imposed by the imple-
mentation of their abstractions. The implementations need 
to mask both overheads incurred by abstractions and the 

Vectorizing the computational kernel 
in the SDK3 implementation of PBPI im-
proves performance by 20 percent. The 
computational kernel is the only significant 
difference between the SDK3 and Cellgen 
implementations; the communication over-
heads are similar. Cellgen’s computational 
kernel in PBPI is faster than Sequoia’s be-
cause Sequoia relies on a compiler-generated 
data structure for generalized array access 
and incurs dereferencing overhead on each 
access. 

Overlapping DMA latency and compu-
tation is important for performance with 
applications like PBPI. The best overlap is 
achieved with different buffer sizes in the 
three implementations. The DMA wait over-
head is minimal when the buffer size is 2 
Kbytes for the SDK3implementation, while 
the overhead is minimal at 4 Kbytes for Cell-
gen and 8 Kbytes for Sequoia. This difference 
occurs because the programming models 
provide different abstractions for accessing 
arrays with their own associated overheads. 
Hence, the costs of their computational ker-
nels and data transfers are different. Optimal 
performance is achieved when the sum of 
the computation costs and all related data 
transfer overheads is minimal. 

In the SDK3 version of PBPI, the epi-
logue—which includes the computation and 
communication for the final iterations that 
cannot be unrolled—is inefficient: One DMA is issued for 
each iteration. In Cellgen and Sequoia, one DMA is issued 
for the entire remainder of the data. This inefficiency ex-
plains why the SDK3 implementation performs worst with 
the largest buffer size.

Sequoia has additional overheads on the SPE including 
barriers, reductions, and extra copies of scalar variables, 
which are artifacts of the Sequoia compilation process. 
Such overheads become noticeable when there is a large 
number of offloaded function calls. There are 324,071 
offloaded function calls in a PBPI run, while there are only 
2,592 in a Fixedgrid run. 

At the end of a leaf task, Sequoia sometimes requires 
the SPEs to synchronize at a barrier. In contrast, Cellgen 
does not require such a barrier among SPEs. Instead, each 
SPE waits until all outstanding DMAs have completed and 
then sets a status value in its local store to indicate com-
pletion. The PPE polls these values from each SPE directly, 
waiting for all SPEs to complete. Cellgen relies on a similar 
method to collect the result from SPEs during reduction 
operations, while Sequoia relies on DMAs and barriers 
among SPEs.

Figure 4. PBPI implementation performance using six SPEs. (a) Total 
execution time as a function of DMA buffer size. (b) Comparison of the best 
cases from each implementation. “SPE kernel” accounts for the time to run 
hand-coded or generated SPE kernel. “DMA wait” is the DMA data transfer 
cost that is not overlapped with computation in addition to the time for 
checking the completion of DMA commands. “SPE overheads” accounts 
for DMA preparation, barriers, and other programming-model-specific 
overheads, which vary depending on their implementations. “Signaling” 
accounts for overhead from signaling between PPE and SPE. 
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