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ABSTRACT

This tutorial starts with a survey of optimizations for
streaming applications. The survey is organized as a cat-
alog that introduces uniform terminology and a common
categorization of optimizations across disciplines, such as
data management, programming languages, and operating
systems. After this survey, the tutorial continues with a
deep-dive into the fission optimization, which automatically
transforms streaming applications for data-parallelism. Fis-
sion helps an application improve its throughput by taking
advantage of multiple cores in a machine, or, in the case
of a distributed streaming engine, multiple machines in a
cluster. While the survey of optimizations covers a wide
range of work from the literature, the in-depth discussion of
fission relies more heavily on the presenters’ own research
and experience in the area. The tutorial concludes with a
discussion of open research challenges in the field of stream
processing optimizations.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—optimiza-

tion; H.2.4 [Database Management]: Systems—query pro-

cessing ; D.4.8 [Operating Systems]: Performance—oper-

ational analysis

Keywords

Stream processing, optimizaition, data parallelism, fission

1 Introduction

We are living in an increasingly connected and instrumented
world, where a large number and variety of data sources
are available from various software and hardware sensors.
These data sources often take the form of continuous data
streams. Examples can be found in several domains, such as
live stock ticker data in financial markets, call detail records
in telecommunications, video streams in surveillance, pro-
duction line status feeds in manufacturing, and vital body
signals in health-care. In all of these domains there is a need
to gather, process, and analyze data streams, detect emerg-
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ing patterns and outliers, extract valuable insights, and gen-
erate actionable results. Most importantly, this analysis of-
ten needs to happen in near real-time.

Stream processing is a computational paradigm that en-
ables carrying out these tasks in an efficient and scalable
manner. Streaming applications are programs that pro-
cess continuous data streams on-the-fly, as the data flows
through the system. Various research communities have
independently developed programming models and systems
for streaming. While there are differences both at the lan-
guage level and at the system level, each of these com-
munities ultimately represents streaming applications as a
graph of streams and operators. Since operators run con-
currently, stream graphs inherently expose parallelism. At
the same time, many streaming applications require high
performance, and as a result each community has developed
optimizations that go beyond this inherent parallelism.

Unfortunately, while there is plenty of literature on stream-
ing optimizations, the literature uses inconsistent terminol-
ogy. Furthermore, different communities have different as-
sumptions that are often taken for granted. To address the
terminology issue, this tutorial includes a survey of stream-
ing optimizations using a uniform terminology. To address
the diverse assumptions, the survey clarifies conditions that
specify when the optimizations can be applied without chang-
ing the semantics of the applications, as well as when they
are expected to improve the performance. This part of the
tutorial is based on a survey paper by the authors [18].

Handling large volumes of live data in short periods of
time is a major characteristic of streaming applications. Thus,
supporting high throughput processing is a critical require-
ment for streaming systems. It necessitates taking advan-
tage of multiple cores and/or host machines to achieve scale.
This requires language and system level techniques that can
effectively locate and efficiently exploit data parallelism in
streaming applications. This latter aspect, called fission, is
the focus of the second part of the tutorial.

Many streaming optimizations are limited in terms of the
speedup they can bring, due to their strong dependence on
application characteristics such as pipeline depth or filter
selectivity. In contrast, the main limiting factor for data
parallelism is the number of available cores, which can be
easily scaled by providing additional hardware. As such, fis-
sion is a fundamental optimization that can provide good
scalability as long as resources are available and the appli-
cation is free of non-parallelizable bottlenecks.

This tutorial formalizes the problem of fission and pro-
vides details on how to apply it safely (no impact on appli-
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Figure 1: Basic concepts related to streaming applications.

cation semantics), transparently (no or minimal intervention
from the application developers), and elastically (adaptive
to run-time dynamics). Additional details on these topics
can be found in our recent work [30].

This tutorial concludes by discussing open research chal-
lenges. The discussion includes both broad challenges valid
for multiple optimizations, and in-depth challenges specific
to fission. For example, the programming model design plays
a big role in making many optimizations easier or harder to
apply. Specifically, for fission, the programming model can
help by providing well-defined interfaces for state.

The optimization techniques covered in this tutorial will
help application developers to better understand performance
trade-offs, compiler and run-time designers to implement
safe and profitable optimizations, and researchers to explore
new areas in streaming optimizations that are in need of
technical innovations.

2 Background

This section provides a brief overview of fundamental con-
cepts related to stream processing applications.

Operator Graphs

A stream processing application is organized as a graph,
formed by a set of operators connected to each other by
streams. A stream is a series of data items, where each data
item consists of a set of attributes. Operators are generic
data manipulators. They can have input and output ports.
An operator fires when a data item is delivered to one of its
input ports. During its firing, an operator can perform pro-
cessing and produce data items on its output ports. Streams
connect output ports of operators to input ports of other op-
erators using FIFO semantics. A source operator does not
have any input ports. It performs edge adaptation to receive
data from an external source and converts it into a stream.
Similarly, a sink operator does not have any output ports.
It performs edge adaptation to deliver data from a stream
to an external sink. Figure 1 illustrates these concepts.

State in Operators

A streaming operator that does not maintain state across
firings is called stateless. For instance, a projection opera-
tor that drops some of the attributes of each data item is a
stateless operator. Operators that maintain state across fir-
ings are called stateful operators. For instance, an operator
that computes the maximum value of an attribute over the
last 10 data items is stateful.

A special case of stateful operators is partitioned state-

ful operators. Such operators maintain independent state
for non-overlapping sub-streams defined by a partitioning

attribute. A typical example is the computation of volume
weighted average price for each stock symbol in a financial
trading stream, independently over the last 10 transactions
involving each stock symbol. In this case, the partition-
ing attribute is the stock symbol and the data items with

a specific stock symbol value constitute a sub-stream. In-
dependent state, which takes the form a window containing
the last 10 data items, is maintained for each sub-stream.

Selectivity of Operators

Streaming operators with a single input and a single output
port have a notion of selectivity associated with them. Se-
lectivity is the number of data items produced per data item
consumed. For example, a selectivity value of 0.1 means 1
data items is produced for every 10 consumed. Selectivity is
an important property, as it is used in establishing safety and
profitability in many optimizations. Many streaming oper-
ators have dynamic selectivity, where the selectivity value
is not known at development time, and can change at run-
time (such as data-dependent filtering, compression, or time-
based windows).

Operators can be categorized based on their selectivities.
Operators that always produce one data item for each data
item consumed are said to have a selectivity of exactly-one.
Operators that produce zero or one data items for each data
item consumed have a selectivity of at-most-one. Finally,
all other operators have unknown selectivity. An example
of unknown selectivity is prolific operators, which produce
more than one data items for each data item consumed.

We assume a programming model that does not restrict
the selectivity of operators, even though we categorize the
operators based on their selectivity and use this informa-
tion for safety and profitability analysis. In contrast, syn-
chronous data flow (SDF) languages [24] assume that the
selectivity of each operator is fixed and known at compile
time. While this provides an opportunity for the compiler
to create static execution schedules, the resulting inflexibil-
ity reduces the set of applications that can be expressed in
this model mostly to the signal processing domain.

Flavors of Parallelism

There are three main forms of parallelism that can be found
in streaming applications. The first is pipeline parallelism,
where an operator processes a data item at the same time
its upstream operator processes the next data item. Since
different operators in an operator graph can be executed on
different cores, processors, or machines, this kind of paral-
lelism is inherently present in streaming applications.

The second is task parallelism, where different operators
process a data item in parallel. Task parallelism takes place
when the data items produced by an operator are consumed
by more than one downstream operator. For instance, in a
video processing application, a frame generated by an oper-
ator can be used to perform face detection and background
detection in parallel. Again, this kind of parallelism is in-
herent in the operator graph.

The third is data parallelism, where different data items
are processed by the same operator in parallel. This is ty-
pically achieved by replicating the operator in question and
routing data items to different replicas. There are two as-
pects of data parallelism that stand out. First, it needs
to be extracted from the streaming application, as the op-
erator graph needs to be modified to include new operator
instances, a splitter needs to be included to route data items
to replicas, and a merger is needed at the end to bring the
results back. Second, it requires additional mechanisms to
preserve the application semantics. For instance, the merger
should reorder the data items so that the original order be-
fore the split is reestablished.
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Safety and Profitability

An optimization is safe if the programs generated by ap-
plying it are guaranteed to maintain the semantics of the
original program. Data parallelism is safe if the operators
that are replicated are stateless or partitioned stateful. In
the latter case, the routing needs to be done according to
the partitioning key, so that each sub-stream is routed to
a single replica. Equally importantly, safe data parallelism
requires a reordering at the merger, details of which depend
on the selectivity of the replicated operators.

Safety alone is not enough to make an optimization useful
in practice. For that, we also need to make sure that the
optimization applied increases the throughput. In the case
of data parallelism, the optimization has a configuration op-
tion: the number of replicas. Determining the best setting
that maximizes the throughput is the profitability problem.

The fission optimization aims at performing safe data par-
allelism that is profitable. It also aims at performing this
transparently, such that the application developers do not
need to explicitly deal with parallelizing their application.

Adaptive Optimization

The profitability of many optimizations depends not only
on application characteristics (such as where the bottleneck
is), but also on system dynamics (such as the workload and
resource availability). As a result, ideally, the profitability
decisions should be adaptive. For instance, when there is an
increase in the workload availability, the number of replicas
in fission would need to be increased.

An important challenge in making optimization profitabil-
ity decisions adaptive is to satisfy the SASO properties of
control systems: stability (do not oscillate wildly), accuracy
(eventually find the most profitable operating point), settling
(quickly settle on an operating point), and overshoot (steer
away from disastrous settings).

3 Optimization Catalog

With the definitions from the previous section in place, this
section surveys 11 common optimizations for streaming ap-
plications. The survey is presented in the form of a catalog,
where each optimization has a subsection of its own, and all
subsections follow a similar structure. This presentation for-
mat is inspired by catalogs for other concepts in computer
science, such as design patterns or refactorings. For a more
detailed version of this catalog, see our prior work [18]. Each
subsection is structured as follows:

Name: For optimizations known under multiple names, we
picked what we believe should be the definitive term.

Tag line: Brief summary of what the optimization does.

Figure: Before-and-after picture for the optimization.

Profitability: When and how the optimization is expected
to improve performance.

Safety: Conditions to be checked to establish that the op-
timization preserves semantic equivalence.

Literature: Pointers to the most influential or unique work
in the area (for a more thorough literature review see [18]).

Operator Reordering

Change the order in which operators appear in the graph.

BA
q0 q1 q2

AB
q0 q1 q2

Profitability: The core idea of operator reordering is to
hoist selective operators upstream so they can eliminate
some data items early. That way, expensive operators down-
stream can spend less time by not processing those data
items. If operators A and B are equally selective, it is more
profitable to put the less expensive one first. If operators A

and B are equally expensive, it is more profitable to put the
more selective one first.

Safety: Operator reordering is a common optimization in
the relational domain. In that domain, safety is established
via algebraic equivalence: A(B(S)) ≡ B(A(S)). However, in
practice, many streaming operators are not simply relational
operators. In that case, one way to establish safety from first
principle is as follows. Reordering is safe if both operators
are stateless, operator A reads only portions of data items
that B forwards unmodified, and vice versa.

Literature: Graefe identified a special case where reorder-
ing is particularly profitable: when the merger at the end of
a data-parallel region is immediately followed by the split-
ter at the beginning of the next data-parallel region, swap-
ping them avoids a choke-point [16]. Eddies are a dynamic
technique for finding the most profitable ordering of opera-
tors with independent selectivities [6]. Rather than literally
rewriting the graph, Eddies instead change the data-item
routing. Hueske et al. present a static analysis for Java that
establishes reordering safety from first principle [20].

Redundancy Elimination

Eliminate operators that are redundant in the graph.

Dup
Split

A C

A B

C

B

A
Dup
Split

Profitability: Eliminating redundant operators is profitable
if resources are limited. For example, if a redundant task
takes time away on a core that could be put to better use,
eliminating that task improves overall performance. A com-
mon cause for redundancy is compilation based on instan-
tiating simple templates. In some cases, redundancy is not
immediately obvious, and instead needs to be exposed by
other optimizations. Another common cause for redundancy
is multi-tenancy, where many users independently launch
similar applications that can share subgraphs.

Safety: By definition, finding redundancy requires identify-
ing equivalent computations. While this is undecidable in
general, it can often be trivially established based on identi-
cal code, or more generally based on algebraic equivalences.
One thing to look out for in redundancy elimination is that
the state of the operators needs to be combinable as well.

Literature: The Rete algorithm is a seminal example for
detecting and eliminating redundancies in a massively multi-
tenant system, where applications are frequently launched
and retracted [11]. NiagaraCQ applied similar ideas in the
context of streaming XML processing [9]. Pietzuch et al.
also eliminate redundancy at application launch time, while
performing distributed placement [29].

Operator Separation

Separate an operator into multiple constituent operators.

A2A1A
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Profitability: Operator separation can be profitable in and
of itself via pipeline parallelism. If A1 and A2 each have
roughly half of the cost of A, and their cost exceeds the
communication overhead, then they can exploit an addi-
tional core to improve overall throughput. But often, op-
erator separation is profitable by enabling other optimiza-
tions, such as fission or operator reordering. For example,
MapReduce applications often separate the Reduce operator
to extract a Combine operator, which they then reorder and
piggy-back on the Map operator [10]. This optimization is
valid in streaming systems as well.

Safety: Operator separation is among the more difficult op-
timizations to establish safety for. To do this from first prin-
ciples, one must analyze the low-level code and establish all
data dependencies. But there are several special cases where
operator separation is easier. For example, an idempotent
operator such as a Select or an associative Aggregate can be
simply repeated. A Select operator can also be separated
to filter one conjunct at a time. A Project operator can be
separated to map one attribute at a time.

Literature: Algebraic equivalences for separating Select, Pro-
ject, and other operators can be found in standard database
text books [12]. Yu et al. present a compiler analysis that
separates Aggregate operators with the help of user annota-
tions [37]. Decoupled software pipelining separates general
code by analyzing data dependencies from first principle [28].

Fusion

Fuse multiple separate operators into a single operator.

BA
q0 q1 q2

A
q0

B
q2

Profitability: Fusion is the dual of operator separation.
Its main performance advantage comes from reduced com-
munication overhead, and from enabling traditional (non-
streaming) compiler optimizations on the fused operator.
However, fusion requires sharing the same machine and po-
tentially the same thread, thus using fewer available re-
sources. In other words, with fusion, there is less oppor-
tunity for task or pipeline parallelism.

Safety: Fusion is among the easiest optimizations to estab-
lish safety for. It is usually safe, except when there are
conflicts with placement constraints. For example, the user
may request colocation, isolation, or exlocation of operators
based on scarce resources such as FPGAs or network cards.

Literature: Fusion is a central optimization for the Stream-
It programming language, because applications in that lan-
guage tend to consist of a large number of fine-grained opera-
tors [15]. In Aurora, fusion is called superbox scheduling [8].
The COLA fusion optimizer for System S takes other place-
ment safety constraints into account while striving for the
most profitable solution [22].

Fission

Replicate an operator for data-parallel execution.

A
q0 q1

A

A

A

Split Merge
q0 q1

Profitability: Fission is most profitable when applied to
an operator with a high processing cost per data item, and
when the overhead of parallelization is low. In the ideal case,
fission has the potential of improving throughput by a factor
of N onN cores. In practice, speedups of 8× or even 16× are
not uncommon, but the speedup is rarely ideal and usually
tops out eventually. Besides parallelization overhead, load
imbalance can also often get in the way, and is the subject
of a separate optimization later in this section.

Safety: To be safe, fission must address state and ordering,
and avoid deadlocks. In terms of state, fission is easiest if
there is either no mutable state or if the state can be parti-
tioned such that each data-parallel operator replica owns a
disjoint subset. Otherwise, stateful fission requires synchro-
nization. In terms of ordering, fission is trivially safe when
no ordering is required; otherwise, ordering must be enforced
by the runtime system, for example, via sequence numbers.
Fission can cause deadlocks if there is a circular wait condi-
tion, where the splitter waits for buffers to be drained before
sending data, but the merger waits for a data item with a
particular sequence number before draining buffers.

Literature: The StreamIt compiler derives large benefits
from fission of stateless operators with static selectivity [14].
Schneider et al. explored how to make fission safe in the
more general case of partitioned-stateful and selective oper-
ators [30]; that work is the topic of the deep-dive in Section 4.
Finally, Brito et al. propose using transactional memory to
make fission safe in the case of arbitrary operator state [7].

Placement

Place the logical graph onto physical machines and cores.

B

D

A

E

C B

D

A

E

C

Profitability: Placement is profitable if it maximizes re-
source utilization while minimizing communication. Assume
a distributed streaming system. On the one hand, colocat-
ing operators on the same machine can cause resource con-
tention, for instance, on cores or the disk. On the other
hand, spreading operators around too much can cause un-
necessary cross-machine communication. A good placement
finds profitable middle ground between these extremes.

Safety: The safety of placement is easy to establish, un-
less there are special resource constraints. For instance, a
particular operator may only work on a GPU, which may be
available only on certain machines. Another safety challenge
consists in dynamically changing the placement of a stateful
operator, because the state must be migrated transparently.

Literature: An early version of the StreamIt compiler ex-
plored placement on a multi-core with non-uniform memory
access [15]. Pietzuch et al. explored placement in a stream-
based overlay network [29]. And SODA combines placement
with job admission in a distributed streaming engine that
runs on a cluster [36].

Load Balancing

Avoid bottleneck operators by spreading the work evenly.
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A1

A2

A3

Split

A1

A2

A3

Split

Profitability: The throughput of a stream graph is usually
bounded by its slowest operator. Load balancing strives to
spread the work around evenly so that all nodes in the sys-
tem can operate near capacity. Thus, the profitability of
load balancing depends on how imbalanced the load was to
begin with, and how well it can be balanced. In the case
of data parallelism (fission), load balancing can be accom-
plished at the splitter by routing data items to each operator
replica that add up to roughly the same amount of work.

Safety: Balancing load by routing data items to data-paral-
lel replicas assumes that all replicas are qualified to handle
all data items they receive. This is easy if they are stateless,
but more challenging when they have state. Besides data-
item routing, another approach to load balancing is operator
placement, which of course is subject to its own safety con-
straints explained in the previous subsection.

Literature: A good resource for load balancing via routing
data items is the River work [5]. On the other hand, exam-
ples for load balancing via operator placement include the
StreamIt compiler [15] as well as Amini et al.’s work [2].

State Sharing

Share identical data stored in multiple places in the graph.

BA BA

Profitability: On general-purpose hardware, applications
are unlikely to just flat run out of memory. Rather, they
would experience throughput and latency degradation due
to exceeding the L1 cache, L2 cache, or even main memory.
Therefore, state sharing is profitable if it helps keep data
closer to the processor, thus avoiding the slower layers of
the memory hierarchy. Another performance advantage of
state sharing is that it can help avoid data copies, allocation,
and serialization, all of which cost time.

Safety: State sharing is typically combined with fusion, be-
cause it is easier to share state when running in the same
process. If each operator still has its own thread, safe state
sharing must avoid race conditions by properly handling mu-
tability, synchronization, and scheduling. Another concern
with state sharing is avoiding memory leaks by releasing the
shared state when none of the co-owners need it anymore.

Literature: Brito et al. tackle general state sharing between
data-parallel operator replicas using transactional memory [7].
A more restrictive case is sharing window state only, which
both StreamIt [14] and CQL [3] support. Finally, an even
more restrictive, but common and profitable, case shares the
state of a queue between two pipelined operators [31].

Batching

Communicate or compute over multiple data items as a unit.

A A'

Profitability: Batching improves throughput by amortiz-
ing some fixed overheads over multiple data items, such as

communication, indirect calls through layers of the stack,
and bringing code and auxiliary data into the cache or into
registers. Batching trades throughput against latency: indi-
vidual data items have longer latency because they wait for
a batch to fill. Therefore, in systems where latency matters,
batching must ensure data items are still processed within
their deadlines. Batching creates inner loops that traditional
(non-streaming) compilers are good at optimizing.

Safety: In latency-critical systems, users may view the ad-
herence to deadlines as a safety issue rather than a prof-
itability issue. Aside from that, batching poses few safety
challenges. One thing to look out for is potential deadlocks
in cyclical graphs, if an operator waits for a batch to form at
its input, but that batch does not fill up because of missing
output from the same operator.

Literature: The SEDA architecture relies on a dynamic
batching controller for picking a profitable batch size [35].
Aurora refers to batching as train scheduling [8]. StreamIt
performs batching statically, calling it execution scaling [31].

Algorithm Selection

Replace an operator by a different operator.

A
α

Aβ

Profitability: The idea of operator selection is, of course,
to pick a less expensive operator. In some cases, there is a
choice between multiple operators with equivalent function-
ality, and it depends on the data characteristics which one is
less expensive. In other cases, the default operator is more
general, and the other operator is less general but faster.

Safety: Algorithm selection poses a safety question when
the operators differ not just in performance, but also in
functionality. In other words, if the faster operator is less
general, we must establish that it is applicable based on the
configuration. There are even cases where strict semantic
equivalence can be sacrificed for performance. An example
for that is using an approximation algorithm. This usage of
algorithm selection is a variant of load shedding, discussed
below.

Literature: The SEDA architecture enables an operator to
pick a different algorithm to provide degraded service [35].
Borealis enables an operator to switch to a different algo-
rithm based on a control input [1]. And the SODA optimizer
offers algorithm selection at the granularity of entire jobs, to
run a variant of a job that is cheaper but lower-quality [36].

Load Shedding

Degrade gracefully during overload situations.

A Shedder A

Profitability: The core idea of load shedding is to sacrifice
some accuracy so requests do not pile up when the offered
load exceeds the processing capacity. This is often a latency
issue: by dropping some data items, the remaining ones that
are not dropped get processed fast enough to satisfy their
deadlines. Sometimes, there are also priorities involved: by
dropping less important data items, the more critical ones
need not get dropped.

Safety: Given that Section 2 defines safety as semantics
preservation, load shedding is by definition unsafe. How-
ever, the alternative (not shedding load) is also unsafe if it

5
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composite Main {

type

Entry = tuple<uint32 uid, rstring server, rstring msg>;

Summary = tuple<uint32 uid, int32 total>;

graph

stream<Entry> Messages = ParSrc() {

param servers: "logs.*.com";

partitionBy: server;

}

stream<Summary> Summaries = Aggregate(Messages) {

window Messages: tumbling, time(5), partitioned;

param partitionBy: uid;

output Summaries: uid = Any(uid), total = Count();

}

stream<Summary> Suspects = Filter(Summaries) {

param filter: total > 100;

}

() as Sink = FileSink(Suspects) {

param file: "suspects.csv";

format: csv;

}

}

ParSrc

Aggr

Filter

Sink

ParSrc

Aggr

Filter

ParSrc

Aggr

Filter

Sink

≤1 ≤1 ≤1

≤1 ≤1 ≤1

Figure 2: Example SPL program (left), its stream graph
(middle), and the parallel transformation of that graph (right).
The paper icons in the lower right of an operator indicate state,

and the numbers in the lower left indicate selectivity.

means that the system crashes or otherwise fails to live up
to its specification, such as quality of service. Therefore,
the goal cannot be safety, but rather maximizing accuracy
within the constraints of load and resources.

Literature: The Scout operating system uses a data-flow
model for its network layer, among other things to enable in-
formed load-shedding decisions [26]. The Aurora streaming
engine implements priority-based load shedding [33]. And
Compact Shedding Filters ship the task of load shedding
from the server to data-generating sensors to avoid unnec-
essary network communication [13].

4 Fission

This section presents a deep-dive into the fission optimiza-
tions, which was briefly mentioned in the optimization cat-
alog (Section 3). The catalog is platform and language ag-
nostic. However, in order to study an optimization in prac-
tice, we must look at a specific platform and language. We
will first introduce the System S platform and the SPL lan-
guage [17], and then discuss applying fission there.

System S and SPL

The programming model behind SPL is asynchronous, as it
allows operators to have dynamic selectivity. The System S
platform allows for distributed execution.

Figure 2 presents a sample SPL program [17] on the left.
The program is a simplified version of a common streaming
application: network monitoring. The application continu-
ally reads server logs, aggregates the logs based on user IDs,
looks for unusual behavior, and writes the results to a file.

The types Entry and Summary describe the structure of the
tuples in this application. A tuple is a data item consisting of
attributes, where each attribute has a type (such as uint32)
and a name (such as uid). The stream graph consists of
operator invocations, where operators transform streams of
a particular tuple type.

The first operator invocation, ParSrc, is a source that pro-
duces an output stream called Messages, and all tuples on
that stream are of type Entry. The ParSrc operator takes
two parameters. The partitionBy parameter indicates that
the data is partitioned on the server attribute from the tuple
type Entry. Thus, {server} is this operator’s partitioning key.

The Aggregate operator invocation consumes the Messages

stream, indicated by being “passed in” to the Aggregate op-
erator. The window clause specifies the tuples to operate on,
and the output clause describes how to aggregate input tuples
(of type Entry) into output tuples (of type Summary). This
operator is also partitioned, but this time the key is the uid

attribute of the Entry tuples. Because the Aggregate opera-
tor is stateful, we consider this operator invocation to have
partitioned state. The Aggregate operator maintains separate
aggregations for each instance of the partitioning key ({uid}
in this case).

The Filter operator invocation drops all tuples from the
aggregation that have no more than 100 entries. Finally,
the FileSink operator invocation writes all of the tuples that
represent anomalous behavior to a file.

The middle of Figure 2 shows the stream graph that pro-
grammers reason about. In general, SPL programs can spec-
ify arbitrary graphs, but the example consists of just a sim-
ple pipeline of operators. We consider the stream graph
from the SPL source code the sequential semantics, and the
fission optimization seeks to preserve such semantics.

The right of Figure 2 shows the stream graph that the run-
time will actually execute. First, the compiler determines
that the first three operators can have data parallelism, and
it allows the runtime to replicate those operators. The oper-
ator instances ParSrc and Aggregate are partitioned on differ-
ent keys. Because the keys are incompatible, the compiler
instructs the runtime to perform a shuffle between them, so
the correct tuples are routed to the correct operator replica.
A shuffle is a bipartite graph between the end of one paral-
lel region and the beginning of the next. The Filter operator
instances are stateless and can accept any tuple. Hence, tu-
ples can flow directly from the Aggregate replicas to the Filter

replicas, without another shuffle. Finally, the FileSink oper-
ator instance is not parallelizable, which implies that there
must be a merge before it to ensure it sees tuples in the same
order as in the sequential semantics.

Safety

In the context of fission, safety means preserving an appli-
cation’s sequential semantics. Doing so requires support in
both the compiler and the runtime.

Compiler

The compiler’s task is to decide which operator instances
belong to which parallel regions. Furthermore, the compiler
picks implementation strategies for each parallel region, but
not the degree of parallelism. One can think of the com-
piler as being in charge of safety while avoiding platform-
dependent profitability decisions.

As usual in compiler optimization, the approach is conser-
vative: the conditions may not always be necessary, but they
imply safety. The conditions for parallelizing an individual
operator instance are:

• No state or partitioned state: The operator instance
must be either stateless, or its state must be a map where
the key is a set of attributes from the input tuple. Each
time the operator instance fires, it only accesses its state
for the given key. Safe fission gives each operator replica
a disjoint partition of the key domain.

• At most one predecessor and successor: The operator
instance must have fan-in and fan-out ≤ 1. This means
parallel regions have a single entry and exit where the
runtime can implement ordering.
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The conditions for forming larger parallel regions with mul-
tiple operator instances are:

• Compatible keys: If there are multiple stateful operator
instances in the region, their keys must be compatible.
A key is a set of attributes, and keys are compatible if
their intersection is non-empty. Using the intersection as
the region key ensures that the splitter is at most as fine-
grained as any individual operator’s key.

• Forwarded keys: Care must be taken that the region
key as seen by a stateful operator instance o indeed has
the same value as at the start of the parallel region. This
is because the split at the start of the region uses the
key to route tuples, whereas o uses the key to access its
partitioned state map. All operator instances along the
way from the split to o must forward the key unchanged.

• No shuffle after prolific regions: A prolific region is
a region with prolific operators. Prolificacy causes tuples
with identical sequence numbers. Within a single stream,
such tuples are still naturally ordered. But after a shuffle,
this ordering could be lost. Therefore, the compiler does
not allow a shuffle at the end of a prolific region.

The compiler must establish the previously described safety
conditions. We must first distinguish an operator defini-
tion from an operator invocation. The operator definition

is a template, such as an Aggregate operator. It provides
different configuration options, such as what window to ag-
gregate over or which function (Count, Avg, etc.) to use.
Since SPL users have domain-specific code written in C++
or Java, we support user-defined operators that encapsulate
such code. Each operator definition comes with an operator

model describing its configuration options to the compiler.
The operator invocation is written in SPL and configures a
specific instance of the operator, as shown in Figure 2. The
operator instance is a vertex in the stream graph.

We take a two-pronged approach to establishing safety:
properties in the operator model for operator definitions and
program analysis for operator invocations in SPL. This is
pragmatic and requires some trust: if the author of the op-
erator deceives the compiler by using the wrong properties
in the operator model, the optimization may be unsafe. Op-
erator models must specify whether or not they have state,
how selective they are, and whether or not they forward all
attributes on input tuples.

In most cases, analyzing an SPL operator invocation is
straightforward given its operator model. However, oper-
ator invocations can also contain imperative code, which
may affect safety conditions. State can be affected by mu-
tating expressions. Selectivity can be affected if the opera-
tor invocation calls submit to send tuples to output streams.
Our compiler uses data-flow analysis to count submit-calls.
If submit-calls appear inside of if-statements, the analysis
computes the minimum and maximum selectivity along each
path. If submit-calls appear in loops, the analysis assumes
that selectivity is Unknown.

Runtime

The System S runtime has a concept of Processing Elements

(PEs), which are a group of operators that the fusion op-
timization has been applied to. They execute inside of a
single operating system process. The runtime support for
fission is mostly concerned with PEs, as parallel regions are
composed of PEs.

The runtime has two primary tasks: routing tuples to
parallel channels, and enforcing tuple ordering. Parallel re-
gions should be semantically equivalent to their sequential
counterparts. In a streaming context, that equivalence is
maintained by ensuring that the same tuples leave parallel
regions in the same order regardless of the number of parallel
channels.

Routing and ordering are achieved through the same mech-
anisms: splitters and mergers in the PEs at the edges of par-
allel regions. Splitters exist on the output ports of the last
PE before the parallel region. Their job is to route tuples to
the appropriate parallel channel, and add any information
needed to maintain proper tuple ordering. Mergers exist
on the input ports of the first PE after the parallel region.
Their job is to take the streams from each parallel channel
and merge their tuples into one, well-ordered output stream.
The splitter and merger must perform their jobs invisibly to
the operators both inside and outside the parallel region.

When parallel regions only have stateless operators, the
splitter routes tuples in round-robin fashion, regardless of
the ordering strategy. When parallel regions have parti-
tioned state, the splitter uses the attributes that define the
partition key to compute a hash value. It then uses that
hash to route the tuple, ensuring that the same attribute
values are always routed to the same operators.

There are two classes of ordering strategies: implicit and
sequence number based. Implicit ordering strategies can be
applied to parallel regions that contain only stateless, non-
selective operators. In such cases, the splitter and merger
can conspire on the order in which tuples are split to, and
merged out of, a parallel region. In these cases, no extra
information is needed on the tuples themselves to maintain
the correct order.

Sequence number based ordering strategies are required
when operators in a parallel region are stateful, selective, or
prolific. While there are various kinds of specializations, the
general idea is that the splitter attaches sequence numbers
to all tuples, and the merger uses those sequence numbers
to put the tuples back in order.

Profitability

The previous section is concerned with how to discover op-
portunities to safely extract data parallelism, and how to
safely execute it in a runtime system. However, discover-
ing where fission can be safely applied does not answer the
basic question: is it profitable? In the context of fission in
a streaming system, solving profitability means finding how
many parallel channels to use in a parallel region.

In synchronous streaming systems, it may be possible to
answer the profitability question statically, at compile time.
But in asynchronous streaming systems with user-defined
operators, it is impractical to determine profitability stati-
cally, which means the decision must happen at runtime.

The following sections describe what problems a solution
to dynamic profitability for fission must solve.

Control Algorithm

Dynamically determining the number of parallel channels
in a parallel region means that there must be a runtime
control algorithm. The input to the control algorithm must
be a runtime metric that system implementers wish to use
to determine profitability. Fission in particular, and data
parallelism in general, tend to pay attention to throughput.
However, one could devise an objective function which also
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uses latency, so as to cap the potential harm to latency while
improving throughput. The control algorithm’s job is to
determine the number of parallel channels that maximizes
this objective function.

However, observing only throughput and latency may not
be enough for a control algorithm to obey all of the SASO
properties described in Section 2. Instead, the control algo-
rithm needs a metric to tell it whether operators in a parallel
channel have reached their capacity limit. Detecting capac-
ity limitations drives the algorithm, and observing the effect
on the objective function checks the accuracy of that capac-
ity detection.

The general approach for the control algorithm is to de-
tect when all of the active parallel channels can not handle
any more capacity. In such a case, there is evidence that
adding parallel channels will increase throughput. The con-
trol algorithm then increase the number of channels, and
after the next period, determines if throughput increased.
If throughput increased, then it will stay at at least this
number of channels, and then evaluate capacity again. If
throughput decreased, then it will backtrack by decreasing
the number of channels.

State Management

Operators in a parallel region may have partitioned state.
As the control algorithm changes the degree of parallelism,
operators that were maintaining state for a partition may
become dormant, and the tuples they would have handled
will be routed elsewhere. To maintain sequential consis-
tency, the operators that remain active in the parallel re-
gion must adopt the partitions from the dormant operators.
The same issue arises when parallel channels are added: in
order to maintain an even spread, the new channels must
adopt some partitions that existing channels are responsible
for. Adopting partitions means that state must be migrated
across operators.

State migration across operators in a streaming system
involves several challenges. First, in normal operation, the
tuples are always flowing. If an operator migrates a parti-
tion’s state, then receives a tuple in that partition, sequen-
tial consistency will be violated. Hence, in order to maintain
sequential consistency, tuples must not flow in the parallel
region while partition state is in flux. In order to ensure that
tuples do not flow during state migration, the splitter and
all of the operators in the parallel region must obey a pro-
tocol that stops their flow while state is moving, and starts
it again once state has settled.

A second challenge is avoiding too many state transfers
while maintaining an even partition distribution among the
operators. As the number of parallel channels expands and
contracts, operators donate and adopt partitions. However,
any given donation or adoption phase should transfer only
the minimal amount of state. Balancing minimal state trans-
fers with maintaining an even distribution requires collusion
between the operators and the splitter. All of the operators
must be able to deterministically decide which partitions
they must donate or adopt, and the splitter must agree with
these decisions. The splitter’s goal is to use a hashing al-
gorithm that is likely to produce a balanced distribution of
partitions while minimizing state movement. In practice,
consistent hashing schemes can solve these problems [21].

5 Open Research Problems

So far this paper was mostly about existing work. The pre-
ceding sections aimed to help users either hand-optimize
their code, or understand automatic optimizations applied
to their code. They also aimed to help implementers build
more efficient streaming systems. In contrast, this section is
about what is missing in existing work. By exploring which
challenges are still open, and have not been fully solved yet,
it aims to help researchers come up with new ideas. These
open challenges are grouped into subsections. Each subsec-
tion first describes a broad spectrum of high-level research
opportunities that apply across the range of optimizations
from Section 3. Following that, each subsection makes the
discussion more concrete for the fission optimization from
Section 4. That way, each subsection highlights both high-
level longer-term and specific shorter-term opportunities.

Programming Model Challenges

A programming model for stream processing is either a stream
programming language (such as StreamIt [34], CQL [3], or
SPL [17]), or a library that exposes the functionality of a
streaming system as a framework (such as SVM [23], S4 [27],
or Storm [32]). Programming model design is an exercise in
juggling several, sometimes conflicting, goals. The program-
ming model needs to be expressive enough so the domain of
applications it works for is not too narrow. At the same
time, it needs to be amenable to static analysis and have
clear semantics to facilitate optimizations. A new program-
ming model needs a foreign-code interface for incorporating
legacy code written in other languages. And the more fa-
miliar a new programming model looks and feels, the easier
it is to adopt by a broad community.

Our own work with fission taught us several program-
ming model lessons. One is that even when the program-
ming model is a new language, optimizations must also take
libraries in existing languages into account. For fission,
that meant providing operator models that assert proper-
ties about state, selectivity, etc.; and providing an API for
state to be called from C++ but handled by the streaming
runtime system. Another lesson was that since partitioning
plays such a central role in fission, it should be a first-class
concept in the language as well.

Optimization Combination

If a streaming system supports two or more of the optimiza-
tions described in Section 3, one question is how to combine
them. One approach is to just apply them one by one. The
order of optimizations matters. For instance, performing
operator separation early opens up opportunities for other
optimizations such as operator reordering. Conversely, fu-
sion should happen late, as it makes other optimizations
more difficult. But rather than performing optimizations
separately one by one, another option is to truly combine
them, making a unified profitability or safety assessment.
Since different optimizations have their own cost models,
combining them leads to new research challenges.

Being a particularly profitable optimization, fission is a
prime candidate for combining with other optimizations,
such as fusion, load balancing, placement, and batching. Of
course, fission can be extended not just with other optimiza-
tions, but also with transformations for different purposes
than optimization. For instance, both fission and fault tol-
erance can be accomplished by replicating operators.
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Interaction with Traditional Compilers

We use the word traditional compiler to refer to a compiler
for a non-streaming language such as Fortran, C, or Java.
Traditional compilers play a role at both ends of compiling a
streaming language. First, besides new features for support-
ing stream processing, a streaming language usually also has
features in common with traditional languages, such as ex-
pressions with function calls, arithmetic, variable accesses,
and so on. Compiler analysis on such expressions is used to
establish safety properties for optimizations. Second, many
compilers for streaming languages generate source code for
non-streaming languages, which must then still be compiled
by a traditional compiler. The traditional compiler comes
with its own traditional optimizations, such as function in-
lining or loop unrolling. Overall performance is best if the
code generated by the streaming compiler is easy to optimize
by the non-streaming compiler.

Fission is a prime example for an optimization that can
benefit from traditional compiler analysis. The analysis can
discover information about state, ordering, selectivity, and
attribute forwarding that drives the safety decisions for fis-
sion. One challenge with this is to analyze general or even
legacy code. At the other end, examples of streaming op-
timizations that interact with downstream traditional com-
piler optimizations include batching and fusion more than
fission. Batching gives rise to loops that a traditional com-
piler can unroll and optimize. And fusion gives rise to func-
tion calls that a traditional compiler can inline. The chal-
lenge is to ensure that generated code does not obscure these
opportunities. For example, calls are easier to inline if they
are monomorphic and part of the same compilation unit.

Dynamic Optimization

A dynamic optimization is performed at runtime, as opposed
to static optimizations that are performed before the appli-
cation starts. Some optimizations, such as load balancing or
load shedding, are dynamic by nature. But many optimiza-
tions, in particular those that modify the operator graph
such as operator reordering and fusion, are more typically
static. Dynamic optimizations have the advantage that they
can use profiling information with statistics about the cur-
rently ongoing run, and can even adapt to changes in load
or resources. The challenge for dynamic optimizations is
to satisfy the SASO properties of control systems outlined
earlier in Section 2. Eddies are an example for operator re-
ordering at runtime without actually changing the graph [6],
whereas Flextream is an example of pausing the application
to rewrite the graph at runtime [19]

In the case of fission, an important dynamic optimization
is elasticity, which means dynamically changing the degree of
parallelism. The main challenge here is profitability: picking
the degree of parallelism that yields the best performance.
This is complicated when there are multiple parallel regions,
each of them with its own degree of parallelism, or when par-
allel regions nest. Another challenge with dynamic fission is
state migration for stateful operators. While the authors
have done some work along those lines, there are opportu-
nities for further improvement by minimizing the disruption
while the degree of parallelism is being changed.

Benchmarks

Demonstrating that an optimization indeed improves perfor-
mance requires benchmarks. Everyone can make up a micro-

benchmark, but the question is how representative that is
of real applications. Realistic benchmarks are required to
evaluate both generality (does the optimization work for real
cases?) and profitability (is the effect large enough to matter
in practice?). The LinearRoad benchmark is an advanced
streaming application in the transportation domain [4]. The
BiCEP micro-benchmarks demonstrate whether or not rela-
tional streaming engines implement certain optimizations [25].
And the StreamIt benchmarks encompass 65 audio, video,
and digital signal processing workloads [34]. Together, they
offer different viewpoints from different communities on the
rapidly evolving field of stream computing.

Fission nicely illustrates the challenges in curating a bench-
mark suite. On the one hand, the StreamIt benchmark
suite is the most comprehensive set of streaming applications
available, totaling 33,000 lines of code, including 30 realistic
applications and 35 micro-benchmarks. On the other hand,
all of these applications are in the media-processing domain.
Only 25% of StreamIt benchmarks have any stateful opera-
tors, which would simplify both the profitability and safety
problems for fission. However, stateful operators appear to
be more prevalent in commercial applications for transporta-
tion, communication, finance, science, and health-care.

Generality of Optimizations

The approach to establishing safety is almost always con-
servative: optimizers err on the side of caution by finding
sufficient conditions, not necessary conditions. The idea is
to support the common case, and not optimize uncommon
cases when their safety conditions are too difficult to prove.
Unfortunately, as discussed above under benchmarks, it is
often not known what the common cases are in practice.
Hence, generalizing an optimizer to make its safety con-
ditions more liberal is fertile ground for intricate research
challenges. Such work needs to be motivated with workload
characterization to demonstrate practical relevance.

To make the discussion concrete, consider the safety con-
ditions for fission. Fission can be more or less conservative
when it comes to state, ordering, topology, and user code.
In each case, there is a spectrum from more restrictive and
easier to handle cases to more liberal but harder to handle
cases. For state, the spectrum ranges from stateless to par-
titioned stateful to arbitrary stateful operators. Ordering is
easier to handle for static selectivity than for dynamic selec-
tivity. The internal topology of a data-parallel region can
range from a single operator to a simple pipeline of opera-
tors to a general subgraph. And in terms of user code, the
spectrum ranges from built-in operators only to code that is
user-defined in the streaming language to user-defined legacy
code in a foreign language to code-generation.

6 Conclusion

This tutorial aims at helping users understand streaming op-
timizations and performance trade-offs, helping implementers
optimize their streaming systems and languages, and helping
researchers select relevant and original problems. The tuto-
rial starts with a survey of stream processing optimizations,
in the form of a catalog for easy cross-referencing. Following
the broad survey comes a deep-dive into fission, a particu-
larly effective optimization that introduces data parallelism.
The tutorial concludes with a discussion of open research
questions, both for streaming optimizations in general and
for fission in particular.
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