Stream Processing Optimizations

Scott Schneider
IBM Thomas J. Watson Research Center
New York, USA

Martin Hirzel
IBM Thomas J. Watson Research Center
New York, USA

Bugra Gedik
Computer Engineering Department
Bilkent University
Ankara, Turkey

Agenda

- 9:00-10:30
- Overview and background (40 minutes)
- Optimization catalog (50 minutes)

- 11:00-12:30
- SPL and InfoSphere Streams background (25 minutes)

- Fission (40 minutes)
- Open research questions (25 minutes)

DEBS’'13 Tutorial: Stream
Processing Optimizations

Scott Schneider, Martin Hirzel, and Bugra Gedik
Acknowledgements: Robert Soulé, Robert Grimm, Kun-Lung Wu

Part 1: Overview and Background

- Streaming sources are plenty

- Volume, Velocity, Variety

* Online analysis is paramount

Quickly process and analyze data,

derive insights, and take timely action \’,
-

Analytic Queries m Data Analysu _Bﬁud_{>
Telco analyses streaming Utility avoids power Hospital analyses streaming
network data to reduce failures by analysing 10 vitals to detect iliness 24

hardware costs by 90% PB of data in minutes hours earlier

Catalog of Streaming Optimizations

Data Sources Streaming Application

- Streaming applications:

graph of streams and z +>,
-0

operators X . 35 B

- Performance is an ‘ >4{0>-.0; |

Important requirement

- Different communities — different terminology

- e.g. operator/box/filter; hoisting/push-down

- Different communities — different assumtions

- e.g. acyclic graphs/arbitrary graphs; shared memory/distributed
- Catalouge of optimizations

- Uniform terminology

- Safety & profitability conditions
- Interactions among optimizations

Results

~DN

D

Fission Optimization

- High throughput processing is a critical requirement
- Multiple cores and/or host machines

. O~
- System and language level techniques

- Application characteristics limit the speedup brought ﬂ
by optimizations

- pipeline depth (# of ops), filter selectivity (%
J

. Data parallelism is an exception @ o
- number of available cores (can be scaled)

- Fission

- Data parallelism optimization in streaming applications
- How to apply transparently, safely, and adaptively?

Background

Operator graph + Operator

- Operators connected by streams -

Stream

- Aseries of data items
Data item

- Aset of attributes

Generic data manipulator
Has input and output ports

Streams connect output ports to input ports
FIFO semantics

Source operator, no input ports

Sink operator, no output ports

Operator firing

input port
source 0 perator '

Perform processing, produce data items

output port

stream

X

operator graph

/;nk operator

State in Operators

Stateful operators - Stateless operators
- Maintain state across firings - Do not maintain state across firings
- E.g., deduplicate: pass data - E.qg., filter. pass data items with
items not seen recently values larger than a threshold

Partitioned stateful operators

- Maintain independent state for non-overlapping sub-streams

- These sub-streams are identified by a partitioning attribute

- E.g.: For each stock symbol in a financial trading stream, compute the volume
weighted average price over the last 10 transactions.
The partitioning attribute: stock symbol.

Selectivity of Operators

- Selectivity

- the number of data items produced per data item consumed
- e.g., selectivity=0.1 means
- 1 data item is produced for every 10 consumed
- used in establishing safety and profitability
- Dynamic selectivity

- selectivity value is
* not known at development time
- can change at run-time

- e.g., data-dependent filtering, compression, or aggregates
on time-based windows

Selectivity Categories

Selectivity categories (singe input/output operators)

- Exactly-once (=1): one in; one out [always]

- At-most-once (<1): one in; zero or one out [always]
- Prolific (=1): one in; one, or more out [sometimes]

Synchronous data flow (SDF) languages

- Assume that the selectivity of each operator is fixed and known at
compile time

- Provide good optimization opportunities at the cost of reduced
application flexibility

- Typically used for signal processing applications
Unlike SDF, we assume dynamic selectivity
- Support general-purpose streaming

Selectivity categories are used to fine-tune optimizations

Streaming Programming Models

Synchronous

Static selectivity
- eg.,1:3
for i in range(3):

result = f(1i)
submit (result)

- In general, m : n where
m and n are statically
kKnown

- Always has static
schedule

Asynchronous
Dynamic selectivity
- e.g., 1:[0,1]

if input.value > 5:
submit (result)

- Ingeneral, 1:*

- In general, schedules
cannot be static

Flavors of Parallelism

- There are three main forms of parallelism in streaming
applications

- Pipeline, task, and data parallelism

HXHYH Sineline
\) - - :

an operator processes a data item at the same time its upstream operator processes the next data item

a task

Y
different operators process a data item produced by their common upstream operator, at the same time

» Pipeline and task parallelism are inherent in the graph

Data Parallelism

=N
X

e
a

X
b
X

C
different data items from the same stream are processed by the replicas of an operator, at the same time

- Data parallelism needs to be extracted from the application
- Morph the graph
- Split: distribute to replicas

- Replicate: do data parallel processing
- Merge: put results back together

- Requires additional mechanisms to preserve application
semantics

- Maintaining the order of tuples
- Making sure state is partitioned correctly

Safety and Profitability

- Safety. an optimization is safe if applying it is
guaranteed to maintain the semantics
- State (stateless & partitioned stateful)

- Parallel region formation, splitting tuples
- Selectivity

- Result ordering, splitting and merging tuples
- Profitability. an optimization in profitable if it
increases the performance (throughput)

- Transparency: Does not require developer input

- Adaptivity: Adapt to resource and workload
availability

Adaptive Optimization

- When the workload increases, more resources
should be requested

- In the context of data parallelism
- How many parallel channels to use at a given time
- Maintaining SASO properties is a challenge

- Stability: do not oscillate wildly

- Accuracy: eventually find the most profitable
operating point

- Settling time: quickly settle on an operating point
- Overshoot: steer away from disastrous settings

Publications

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream processing
optimizations. Technical Report RC25215, IBM Research, 2011. Conditionally accepted to
ACM Computing Surveys, minor revisions pending.

S. Schneider, M. Hirzel, B. Gedik, and K-L. Wu. Auto-Parallelizing Stateful Distributed
Streaming Applications, International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012.

R. Soulé, M. Hirzel, B. Gedik, and R. Grimm. From a Calculus to an Execution Environment
for Stream Processing, International Conference on Distributed Event Based Systems, ACM
(DEBS), 2012.

Y. Tang and B. Gedik. Auto-pipelining for Data Stream Processing, Transactions on Parallel
and Distributed Systems, IEEE (TPDS), ISSN: 1045-9219, DOI: 10.1109/TPDS.2012.333, 2012.

H. Andrade, B. Gedik, K-L. Wu, and P. S. Yu. Processing High Data Rate Streams in
System S, Journal of Parallel and Distributed Computing - Special Issue on Data
Intensive Computing, Elsevier (JPDC), Volume 71, Issue 2, 145-156, 2011.

R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, H. Andrade, K-L. Wu, and B. Gedik.
COLA: Optimizing Stream Processing Applications Via Graph Partitioning, International
Middleware Conference, ACM/IFIP/USENIX (Middleware), 20009.

B. Gedik, H. Andrade, and K-L. Wu. A Code Generation Approach to Optimizing High-
Performance Distributed Data Stream Processing, International Conference on Information
and Knowledge Management, ACM (CIKM), 2009.

S. Schneider, H. Andrade, B. Gedik, A. Biem, and K-L. Wu. Elastic Scaling of Data Parallel
Operators in Stream Processing, International Parallel and Distributed Processing
Symposium, IEEE (IPDPS), 20009.

SPL Language Reference. IBM Research Report RC24897, 2009.

DEBS’'13 Tutorial: Stream
Processing Optimizations

Scott Schneider, Martin Hirzel, and Bugra Gedik
Acknowledgements: Robert Soulé, Robert Grimm, Kun-Lung Wu

Part 2: Optimization Catalog

Motivation

Design Patterns

Elements of Reusable
Object-Oriented Software

— Erich Gamma
» Catalog = surve
y Ralph Johnson

John Vlissides

R

INEFACTORING
IMPROVING THE DESIGN
oF ExisTING CoDE

but organized as
easy reference

« Use cases:

— User: understand optimized code;
hand-implement optimizations

— System builder: automate optimizations;
avoid interference with other features

— Researcher: literature survey (see paper);
open research issues

L

Stream Optimization Literature

Stream
Optimization

Conflicting terminology Unstated assumptions
« Operator = filter = box = stage « Missing safety conditions

= actor = module « Missing profitability trade-offs
* Data item = tuple = sample « Any graph vs. forest vs.

« Join = relational vs. any merge single-entry, single-exit region
 Rate = speed vs. selectivity Shared-memory vs. distributed

Optimization Name

Key idea.

Graph » Graph
before after

Profitability

Micro-benchmark
Runs in SPL

Relative numbers
Error bars are standard
deviation of 3+ runs

* Preconditions for
correctness

Throughput
(higher is better)

Variations

Central trade-off factor

* Most influential
published papers

Dynamism

* How to optimize at runtime

List of Optimizations

Graph changed
]

| |

Operator reordering
Redundancy elimination
Operator separation
Fusion

Fission

Graph unchanged

A
{ 1

Placement
Load balancing
State sharing
Batching
Algorithm selection -

Load shedding

1

1

Semantics unchanged

Semantics

changed

Operator Reordering

Change the order in which operators appear in the graph.

dp A Q4 = do » dp . Q4 A Qo

Profitability

Selection Reordering

» Commutative 5 20 —Not reordered
« Attributes available £ 157~-.._ ~~Reordered
3 1.0 - B —
£ 05 -
0.0 ' I T 1
Variations 000 025 050 075 1.00

Selectivity of B
Dynamism

Algebraic
Commutativity analysis
Synergies, e.g. fusion, fission

« Eddy

Redundancy Elimination

Eliminate operators that are redundant in the graph.

A —-— B — B —»

- ——— . ———————————————————

Same algorithm
Data available

—Not eliminated

Throughput
o
()

-~ ~Eliminated
0.0 ' ' U 1
- 000 025 050 075 1.00
Variations Fraction of cost in shared subgraph

(operator A)
Dynamism

Many-query optimization
Eliminate no-op

Eliminate idempotent operator
Eliminate dead subgraph

* In many-query case:
share at submission time

Operator Separation

Separate an operator info multiple constituent operators.

—>A—>»—>A1—>A2—>

Profitability

Separating Aggregation
» Ensure A;(Ay(s)) = A(s) " —Not separated
2 Fid mm e - --Separated
£ "
e)] S~
~ 40 .
£ 17
|—
0 T T T T T 1
Variations 0.00 0.17 0.33 0.50 0.67 0.83 1.00
Selectivity of Aggregation

Using special API

Dependency analysis
Enables reordering

Fusion

Fuse multiple separate operators into a single operator.

do g4 do

s A —/—» B —

25 - Fusion
» Have right resources o 2B = —Not fused
= \ o
« Have enough resources 2154 Fused
» No infinite recursion 2 1.0/ =
£ 05 - i oz
0.0 v v ' ' T 1
Variations o 1 2 3 4 5 6
Operator cost / communication cost

Single vs. multiple threads
Fusion enables traditional
compiler optimizations

Dynamism

* Online recompilation
» Transport operators

. 10
Fission
Replicate an operator for data-parallel execution. A
(¢ » 9, split —» A —> MergeiL»

\A/

Profitability

Fission
« No state or disjoint state . 87 —plslo=1/1/0 =
. : : = ——plslo = 1/0/1 | T
Merge in order, if needed %, g oo p/slo- 1/0/9 __________
B2 T e
Al s
S
0 T T T T 1
Variations 1 2 3 4 5 6
Number of Cores
* Round-robin (no state) Dynamism

Hash by key (disjoint state)
Duplicate

 Elastic operators (learn width)
« STM (resolve conflicts)

1

Placement

Place the logical graph onto physical machines and cores.

- A ——» B ——» C —»

Sag

- D —» E — —» D — E *+—>

Profitability

Placement
- Have right resources _ 257 —Not colocated
« Have enough resources 2 ?g ' -~ ~Colocated
« Obey license/security 210
If dynamic, need migratability £ 05
0.0 : ; .
Variations 0 1 2 3

Communication cost

« Based on host resources vs.
network resources, or both
« Automatic vs. user-specified

Dynamism

« Submission-time
* Online, via operator migration

12

Load Balancing

Avoid bottleneck operators by spreading the work evenly.

A, A,
P .
— Split '.L. A, » — Split -F» A,
N X
Ag Ag

Profitability

Load Balancing

. . 40 +——— —_————
« Avoid starvation =
* Ensure each worker is 830 o
e 2.0 - -
equally qualified 3 ©" |— -Balanced, 4 replica
Establish placement safet i= 1.0 17-~"Balanced, 3 replicas
P y - 0.0 ——Skewed, 4 replicas
Variations 0 20 40 60 80
Percent load on bottleneck replica

« Balancing work while
placing operators

« Balancing work by
re-routing data

Dynamism

 Easier for routing than placement

13

State Sharing

Share identical data stored in multiple places in the graph.

« Common access . ;'g
(usually: fusion) % 66
* No race conditions 3 0.4 1 —Not shared
« No memory leaks = 0.2 1 ---Shared
0.0 +——

Variations

1

@128
256
512

1,024

Sharing queues
Sharing windows
Sharing operator state

Dynamism

* N/A

14

Batching

Communicate or compute over multiple data items as a unit.

EEEE EEEE ERER ERER
s A — —> A —

Profitability

Batching
 No deadlocks A et
- Satisfy deadlines - P
2 i S —
%4 —C2s — Throughput
---Latency
O Ll T T T T T T T]
Variations 12 3 456 7 8 910
Batch size

« Batching enables traditional
compiler optimizations

Dynamism

« Batching controller
 Train scheduling

15

Algorithm Selection

Replace an operator by a different operator.

Profitability
Algorithm Selection

* Aa(s) = AB(S) 5 10 - =" -mmmmmmmeeem .
« May not need to be safe 208 -

$ 0.6 -

04 -

—Nested loop join
==-Hash join

= 0.2 -
0.0

Variations 0O 200 400 600 800 1,000
Window size

Algebraic
Auto-tuners
General vs. specialized

Dynamism

« Compile both versions, then
select via control port

16

Load Shedding

Degrade gracefully during overload situations.

1 1] EEEN EEEN [| | HE
—_ A —> — Shedder —» B

Profitability
Load Shedding

» By definition, not safe! 197 I ’
* QoS trade-off — Throughput
0.5 1 4 ---Accuracy
0.0 1 T 1
Variations 0.00 0.01 0.10 1.00

Selectivity
(variations: where in graph)

* Algorithm selection . Always dynamic

To Learn More

DEBS’13 proceedings:
“Tutorial: Stream Processing Optimizations”

“A Catalog of Stream Processing Optimizations”,
Martin Hirzel, Robert Soulé, Scott Schneider,
Bugra Gedik, and Robert Grimm. IBM Research
Report RC25215, 28 September 2011.

“A Catalog of Stream Processing Optimizations”,
Martin Hirzel, Robert Soule, Scott Schneider,
Bugra Gedik, and Robert Grimm. ACM Computing
Surveys (CSUR). Conditionally accepted, minor
revisions pending.

DEBS’ 13 Tutorial: Stream
Processing Optimizations

Scott Schneider, Martin Hirzel, and Bugra Gedik
Acknowledgements: Robert Soulé, Robert Grimm, Kun-Lung Wu

Part 3: InfoSphere Streams
Background

Streams Programming Model

e Streams applications are data flow graphs that
consist of:
— Tuples: structured data item
— Operators: reusable stream analytics
— Streams: series of tuples with a fixed type
— Processing Elements: operator groups in execution

Streams Processing Language

composite Main {
type
Entry = int32 uid, rstring server,
rstring msg;
Sum = uint32 uid, int32 total;
graph
stream<Entry> Msgs = ParSource() {
param servers: "logs.*x.com";
partitionBy: server;
I3

stream<Sum> Sums = Aggregate(Msgs) {
window Msgs: tumbling, time(5),
partitioned;
param partitionBy: uid;

stream<Sum> Suspects = Filter(Sums) { Filter
param filter: total > 100;

}

() as Sink = FileSink(Suspects) {
param file: "suspects.csv";
I3
¥

SPL: Immutable by Default

stream<Data> Out = Custom(In) { / immutable by default
42;

logic state: int32 factor_ =
onTuple In: {
submit ({result=In.valxfactor_}, Out);

by
}

straight-forward to statically
determine this is a stateless operator

stream<Data> Out = Custom(In) {

. logic state: mutable int32 count_ = 0;
explicitly mutable onTuple In: {
++count_;
submit({count=count_}, Out);
}

}

straight-forward to statically
determine this is a statelful operator

SPL: Generic Primitive Operators

an Aggregate invocation

the Aggregate operator model

stream<Sum> Sums = Aggregate(Msgs) { {Aggregate

window Msgs: tumbling, time(5),
partitioned;
param partitionBy: uid;

}

}

{parameters {groupBy optional Expression}

{partitionBy optional Expression}}

{inputPorts 1 required windowed}
{outputPorts 1 required}

_~

Aggregate instance code

Source & Compilation & Execution

x86 host x86 host x86 host x86 host x86 host

Source & Compilation & Execution

%)
c
o
5
O
&}

x86 host x86 host x86 host x86 host x86 host

Source & Compilation & Execution

Fer— e
‘-’.—1-

x86 host x86 host x86 host x86 host x86 host

DEBS’ 13 Tutorial: Stream
Processing Optimizations

Scott Schneider, Martin Hirzel, and Bugra Gedik
Acknowledgements: Robert Soulé, Robert Grimm, Kun-Lung Wu

Part 4: Fission Deep Dive

Fission Overview

composite Main {
type
Entry = int32 uid, rstring server,
rstring msg;
Sum = uint32 uid, 1nt32 total;

graph
stream<Entry> Msgs = ParSource() {
param servers: "logs.x*x.com"; ParSrc
) partitionBy: server;

window Msgs: tumbling, time(5),
partitioned;

stream<Sum> Sums = Aggregate(Msgs) { [$>
param partitionBy: uid;

stream<Sum> Suspects = Filter(Sums) {
' param filter: total > 100; Filter Filter Filter Filter

() as Sink = FileSink(Suspects) {
' param file: "suspects.csv";
¥

Technical Overview

Compiler:

* Apply parallel transformations

* Pick routing mechanism (e.g., hash by key)

* Pick ordering mechanism (e.g., seq. numbers)

lADL

Runtime:

* Replicate segment into channels

* Add split/merge/shuffle as needed
* Enforce ordering

Transformations

Parallelize Parallelize sources Combine parallel Rotate

non-source/sink and sinks regions merge and split

|
4 11 4 <

|
| o—0

"é}.ﬂ | — R
! o—©O

Examples:
*OPRA source
eDatabase sink

Also known as
“shuffle”

Do all of the above as much as possible,
wherever it is safe to do so.

Core Challenges

e State

— Problem: No shared memory between channels
(partitioned local state)

— Solution: Only parallelize if stateless or partitioned
(i.e., separate state into channels by keys)

e Order

— Problem: Race conditions between channels
(independent threads of control)

— Solution: Only parallelize if merge can guarantee
same tuple order as without parallelization

Safety Conditions

Parallelize Parallelize sources Combine parallel Rotate
non-source/sink and sinks regions merge and split
|
-® o— | —o E}D—l@ E}.—ie
|
g 4§ 3 4 <
|
|
| o—0
E}i— | —1<§ o—©
|
'@' | o o %
* stateless or » stateless or » stateless * incompatible
partitioned state partitioned state or keys

simple chain

compatible keys
forwarding

selectivity <1

* Can't parallelize
— Operators with >1 fan-in or fan-out
— Punctuation dependecy later on

 Can't add operator to parallel segment if

— Another operator in segment has co-location
constraint

— Keys don't match

Constraints & Fusion

Infer Select
partition parallel Fusion
segments

Compile-time

ADL
Expand Check Place
parallel —> placement —> partitions
segments constraints on hosts

Submission-time

Compiler to Runtime

Compiler

compile-time

Graph + unexpanded
parallel regions

Fully expanded
graph submission-time

Runtime Runtime Runtime
graph graph graph
fragment fragment fragment

run-time

Runtime

state selectivity
gaps dups ratio
round-robin X X X 1:1
seqno partitioned X X 1:1
strict seqno & pulse partitioned v X 1:[0,1]
relaxed segno & pulse partitioned v v 1:[0,o°]
Operators in parallel segments:
* Forward seqno & pulse
| : \ Merge:
Split: - — . Apply ordering
* Insert segno & pulse - - - policy
« Routing . ~ * Remove seqgno (if

there) and drop
pulse (if there).

channels
0
r \ hext
1
2(N\
Round-Robin
channels . ,---.
0 [22:16! 10]5 seenHeap
(Iy
" T 8—}‘: lastSeqno = 4
2[(248 R2IOF nextHeap

~

Strict Sequence Number & Pulses

Merger Ordering

channels
of 13 10,7 |
1(5 |
2 151296

nextHeap

lastSeqno = 4

Sequence Numbers

channels P
of @ @@
1|
2 5|

J

\

J

-——

seenHeap

lastSeqno = 4
lastChan = 0

nextHeap

Relaxed Sequence Number & Pulses

Application Kernel Performance

| S ——

(c) Twitter NLP

—— — —

':[& Parse i»3% ' Match_ s
4 =1 l /

~— — — e ——

(d) Twitter CEP

Speedup vs. 1 channel

— — — —

o=
%

~—_ —

(e) Finance

2{ - s

20| | = Network monitoring

18 {--| -4 Twitter NLP

16 | - PageRank

14 { | =< Twitter CEP

121-- Finance f

00 4
8 Jd4o - Sy]
6 Jq4- - N &L]
4 o
2] == - 32
0+t \ \ \ \

1 2 4 8 16

(a) Network monitoring

Elasticity: The Problem

* What is N? We want to:
— find it dynamically, at runtime
— automatically, with no user intervention

— in the presence of stateless and partitioned
stateful operators

— maximize throughput

Elasticity: Solution Sketch

local control,
adaptation

v

_‘.':':'}.ﬁsg
global storage, synchronization

14

DEBS’'13 Tutorial: Stream
Processing Optimizations

Scott Schneider, Martin Hirzel, and Bugra Gedik
Acknowledgements: Robert Soulé, Robert Grimm, Kun-Lung Wu

Part 6: Open Research Questions

Programming Model Challenges

High-level
Easy to use
Optimizable

CEP patterns
StreamDatalog
StreamSQL
Streamlt (MIT)
Graph GUI
SPL
Java APl
Annotated C
C/Fortran

Low-level
General
Predictable

Other challenges
» Foreign code
« Familiarity

Interaction of SPL and C++

Application

source code

(SPL)

4

Operator
model

(XML)

Operator
code

generator

At compile time

At run time

Stream of
output
data items

Operator
instance
(C++)

(XML)

Operator
CoiPpLiler instance model
(XML) 7
Stream of
input
data items

Application

model >

Streaming platform

Optimization Combination

Operator separation
Operator reorderm —>

Algorithm selection
\ F|SS|on l
Redundancy elimination
Load shedding

Placement — Fu3|on

Load balancing

Challenges

 |f separate:
order

 |[f combined:
profitability model

State sharing Batching

Interaction with Traditional
Compiler Analysis

Traditional compiler analyses

/ _______ Operator separation
—>

Operator reordering <
P / é} ‘L / Algorithm selection

Fission ‘l'

Redundancy elimination
Load shedding
F>|acLement/_>FU'SioIn

Load balancing

. | Challenges:
State sharing Batching « State
* Ordering
« Selectivity
» Key forwarding

Interaction with Traditional
Compiler Optimizations

Traditional compiler analyses

/ \ Operator separation

Opeiior reorderlng\ ‘l' / ‘Zlgorithm selection
FISSIOI’] ‘l'

Redundancy elimination
Load shedding
P|acjmem/_>FUSion

Load balancing

_ . Challenges:
State sharing Batching + Inlining
\ / Loop unrolling
Traditional compiler optimizations » Deforestation

» Scalarization

Dynamic Optimization

Compile Submission Runtime Runtime

time time discrete continuous
Operator Redundancy Load Operator
separation elimination balancing reordering

Fusion Fission Batching

State Placement Load

sharing shedding
Algorithm Ot\lgver/c':hal/enges:
selection * seltling

« Accuracy

« Stability
* Overshoot

Dynamic Operator Reordering

_>A—>B—>C—>D—>;—>'Ed’rdy——>

Approach: Emulate graph change via data-item routing.
Example: Eddies [Avnur, Hellerstein SIGMOD’00]

Benchmarks

Wish List Literature

* Representative * LinearRoad
— ... of real code [Arasu et al. VLDB'04]
— ... of real inputs e BIiCEP

« Fast enough to conduct [Mendes, Bizarro,
many experiments Marques TPC TC'09]

* Fully automated / scripted <« Streamit

+ Self-validating [Thies, Amarasinghe

PACT10]

* Open-source with
industry-friendly license

Generality of Optimizations

Safe

Supported

Profitable and/or common

Challenges

« Expand

“Supported”

* In the right

direction

Generality of Fission

Safe

State Ordering | Topology | User code

Supported Static Single Built-in

Stateless .
selectivity | operator | operators
Partitioned Simple | Streaming
stateful pipeline language
Arbitrary Dynamic | Arbitrary Foreign
stateful selectivity | subgraph | language
Challenges
Profitable and/or common - Expand
“Supported”

* In the right
direction

