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1. Introduction

We present Streamflow, a new multithreaded memory manager Efficient dynamic memory allocation is essential for depkto

designed for low overhead, high-performance memory diioca
while transparently favoring locality. Streamflow enabitag over-
head simultaneous allocation by multiple threads and adagse-
quential allocation at speeds comparable to that of custmuen-
tial allocators. It favors the transparent exploitationesfporal and
spatial object access locality, and reduces allocatarded cache
conflicts and false sharing, all using a unified design baseskg-
regated heaps. Streamflow introduces an innovative dedchw
uses only synchronization-free operations in the most comecase
of local allocations and deallocations, while requiringnimial,
non-blocking synchronization in the less common case obtem
deallocations. Spatial locality at the cache and page Is¥alored
by eliminating small objects headers, reducing allocatduced
conflicts via contiguous allocation of page blocks in phgbmem-
ory, reducing allocator-induced false sharing by usingegated
heaps and achieving better TLB performance and fewer padjs fa
via the use of superpages. Combining these locality optitiuas
with the drastic reduction of synchronization and latenegre
head allows Streamflow to perform comparably with optimiged
quential allocators and outperform—on a shared-memortesys
with four two-way SMT processors—four state-of-the-artltinu
processor allocators by sizeable margins in our experigndrite
allocation-intensive sequential and parallel benchmasles! in our
experiments represent a variety of behaviors, includingtipdo-
cal object allocation-deallocation patterns and procieogisumer
allocation-deallocation patterns.

Categories and Subject Descriptors  D.4.2 [Operating Systeniis
Storage Management—Allocation/deallocation strategibs3.3
[Programming LanguagésLanguage Constructs and Features—
Dynamic storage management; D.4Qpfrating SystenfisPro-
cess Management—Concurrency, Deadlocks, Synchronizatio
Threads; D.1.3Rrogramming TechniqugsConcurrent Program-
ming

General Terms Algorithms, Management, Performance

Keywords memory management, multithreading, shared mem-
ory, synchronization-free, non-blocking
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server and scientific applications [27]. As more of theseliapp
cations use thread-level parallelism to exploit multigssors and
emerging processors with multiple cores and threads, ldeataul-
tiprocessor memory allocation becomes of paramount irapo#.

Dynamic memory allocation can negatively affect perforosan
by adding overhead during allocation and deallocation atjsrs,
and by exacerbating object access latency due to poor tpcali
Therefore, effective memory allocators need to be optichifoe
both low allocation overhead and good object access lgc8iial-
ability and synchronization overhead reduction has beercém-
tral consideration in the context of thread-safe memorgcallors
[3, 18], while locality has been the focal point of the desifrse-
guential memory allocators for more than a decade [11].

Multiprocessor allocators add synchronization overheathe
critical path of all allocations and deallocations. Symxctization
is needed because a thread may need to access anothersthread’
heap in order to remotely release an object to the owningathre
Since such operations may be initiated concurrently by ipialt
threads, synchronization is used to arbitrate thread aesds the
data structures used for managing the heaps. Therefoet Heaps
need to be protected with locks or updated atomically witidre
modify-write operations such asap&swap. The vast majority of
thread-safe allocators use object headers [3,9, 15, 18y@5¢h
facilitate object deallocation in local heaps but pollute tache
in codes that allocate many small objects.

Locality-conscious sequential allocators segregate ctdjoef
different sizes to different page blocks allocated fromdperating
system [7]. Objects are allocated by merely bumping a poartd
no additional information is stored with each object. In erah,
the allocation order of objects does not necessarily mateir t
access pattern. However, contiguous allocation of smg#éobd
works well in practice because eliminating object head&ipsh
avoid fragmentation and cache pollution.

Efficient, thread-safe memory allocators use local heaps-to
duce contention between threads. The use of local heaps aelp
multiprocessor allocator avoid false sharing, since tiseand to
allocate and deallocate most of their objects locally [3]aAower
level, page block allocation and recycling policies in Huesafe
allocators are primarily concerned with fragmentation blogvup,
without necessarily accounting for locality [3].

The design space of thread-safe allocators that achieve bot
good scalability and good data locality merits further stigation.

It is natural to consider combining scalable synchron@rathech-
anisms (such as lock-free management of heaps) with Igcalit
conscious object allocation mechanisms (such as segcelgasps
with headerless objects). Although the two design conaté®rs of
locality and scalability may seem orthogonal and compldargn
at first glance, combining them in a unified design is not nyesal
engineering effort. Several problems and trade-off'seqirisan at-



tempt to integrate scalable concurrent allocation mecmasiwith
cache- and page-conscious object allocation mechanisasifii-
fied design. Addressing these problems is a central cotitribof

this paper. We show that both memory management overhead and ,

locality exploitation in thread-safe memory allocators @ im-
proved, compared to what is currently offered by statehefdrt
multiprocessor allocators. These design improvementstands-
sociated performance benefits are also a key contributidhisf
paper.

We present Streamflow, a thread-safe allocator designed for
both scalability and locality. Streamflow’s design is a diree-
sult of eliminating synchronization operations in the coomnease,
while at the same time avoiding the memory blowup when $grict
thread-local heaps are used in codes with producer-comsume
allocation-freeing patterns. Local operations in Streamfare
synchronization-freeNot only do these operations proceed without
thread contention due to locking shared data, but they atsmepd
without the latency imposed by uncontested locks and atomic
structions.The synchronization-free design of local heaps enables
Streamflow to exploit established sequential allocatiotinupa-
tions which are critical for locality, such as eliminatingject
headers for small objects and using bump-pointer allonaitio
page blocks comprising thread-local heaps.

Streamflow also includes an innovative remote object deallo
cation mechanism. Remote deallocations — namely dealtosat
of objects from threads different than the ones that imjtial-
located them — are decoupled from local allocations andlateal
cations by forwarding remotely freed objects to per-threazh-
blocking, lock-free lists. Streamflow’s remote deallocatimecha-
nism enables lazy object reclamation from the owning thréead
a result, most allocation and deallocation operationsgedavith-
out the cost of atomic instructions, and the infrequent atpens
that do require atomic instructions are non-blocking, oele and
provably fast under various producer-consumer objectation-
freeing patterns.

Streamflow’s design favors locality at multiple levels. Bey
reducing memory management overhead and latency, dengupli
local and remote operations promotes temporal localityllowing
threads to favor locally recycled objects in their privagaps. The
use of thread-local heaps reduces allocator-induced $&iagng.
Removing object headers improves spatial locality withéche
lines and page blocks. The integration with a lower levetaus
page manager which utilizes superpages [19, 20] avoidsatio-
induced cache conflicts via contiguous allocation of pagekd in
physical memory, and reduces the activity of the OS page gana
the number of page faults and the rate of TLB misses. Comdpinin
these techniques produces a memory allocator that comiyste
outperforms other multithreaded allocators in experimavith up

to 8 threads on a 4-processor system with Hyperthreaded Xeon

processors. Streamflow, by design, also adapts well to sdgle
codes and performs competitively with optimized sequératial
application-specific allocators.

This paper makes the following contributions:

namely blowup avoidance and false sharing avoidance, utitho
sacrificing the locality and low latency benefits of bumprper
allocation.

We present memory allocation and deallocation schemes that
take into account cache-conscious layout of heaps, page- an
TLB-locality. To our knowledge, Streamflow is the first mul-
tiprocessor allocator designed with multilevel and mu#ig
locality considerations.

We demonstrate the performance advantages of our design
using realistic sequential and multithreaded applicaties
well as synthesized benchmarks. Streamflow outperforms fou
widely used, state-of-the-art multiprocessor allocaitoegloca-
tion-intensive parallel applications. It also performsngara-

bly to optimized sequential allocators in allocation-imgive
sequential applications. Streamflow exhibits solid penfamce
improvements both in codes with mostly local object allarat
freeing patterns and codes with producer-consumer object
allocation-freeing patterns. We have experimented wit8/sii?

with four two-way SMT processcotsSuch SMPs are popular
as commercial server platforms, affordable high-perforcea
computing platforms for scientific problems, and building
blocks for large-scale supercomputers. Since Streamflion: el
inates (in the common case) or significantly reduces (in the
uncommon case) synchronization, the key scalabilitytingi
factor of multithreaded memory managers, we expect it to be
scalable and efficient on larger shared-memory multipsmss

as well.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents the major designi{ri
ples, mechanisms and policies of Streamflow. Section 4 ptese
our experimental evaluation of Streamflow alongside otheltim
processor allocators and some optimized sequential atiscadn
Section 5 we discuss some implications of the design of Btrea

flow and potential future improvements. Section 6 summatrike

paper.

2. Related Work

Streamflow includes elements adopted from efficient seglent
memory allocators proposed in the past. Streamflow’s satgdg
heap storage and BIBOP (big bag of pages)-style allocatesn d
rives from an allocation scheme originally proposed by Gteete

in [24] and from the concept of independently managed mem-
ory zones which dates back to 1967 [21]. Segregated heagystor
has since been used in numerous allocators, including dénelatd
GNU C allocator in Linux [16], an older GNU allocator [11], \&h

loc [26], and more recent allocators such as Reaps [4] and[¥am
Modern allocators tend to adopt segregated heaps becayserth
able very fast allocation. Deallocation in segregated ladlapators

is more intricate, because in order to comply with the seiosuof
free(), the allocator needs to be able to discover internally the
size of each deallocated object, using the object pointés asly
input. Deallocation is simple if each object has a headentjp

* We present a new thread-safe dynamic memory manager whichyg the pase of the heap segment from where the object was allo-

bridges the design space between allocators focused ditjoca
and allocators focused on scalability. To our knowledgés th
is the first time a memory allocator efficiently unifies lotgali
considerations with multiprocessor scalability.

¢ We present a new method for eliminating (in the common case)
and minimizing (in the uncommon case) synchronization-over
head in multiprocessor memory allocators. Our method decou
ples remote and local free lists and uses a hew non-blocking r
mote object deallocation mechanism. This technique preser
the desirable properties of a multiprocessor memory aitwca

cated. This technique is used, for example, in the GNU C altoc
and in Reaps [4, 16]. However, object headers introducerfesga-
tion, pollute caches, and eventually penalize codes wityrsenall
object allocations. Therefore, locality-conscious allomes such as
PHKmalloc [12] and Vam [7] eliminate object headers enyifer
small objects and use tables of free lists to manage relesren:
in segregated heaps. Elimination of headers is commonipeant
custom memory allocators [4], as well as semi-custom etitvsa

1This is the largest shared-memory system we have directsitoe



with alternate semantics fdiree (), such as region-based alloca-
tors [8].

Streamflow uses segregated object allocation in threadtpri
heaps, as in several other thread-safe allocators ingudiard
[3], Maged Michael's lock-free memory allocator [18], Tcloa
from Google’s performance tools [10], LKmalloc [15], ptriced
[9], and Vee and Hsu’s allocator [25]. In particular, Stréiam
uses strictly thread-local object allocation, both thr&azhl and
remote deallocation and mechanisms for recycling free plogks
to avoid false sharing and memory blowup [3, 18].

Streamflow differs from earlier multithreaded memory adloc
tors in several critical aspects: First, its design decesipbcal
from remote object deallocation to allow local allocatioaleal-
location without any atomic instructions. Atomic instriacts are
used only sparingly for remote object deallocation and &myr
cling page blocks. Second, Streamflow eliminates objectiérsa
for small objects, thereby reducing cache pollution androwp
ing spatial locality. Tcmalloc is the only thread-safe efltor we
are aware of that uses the same technique, although Tcnussksc
locks whenever memory has to be allocated from or returned to
global free memory objects pool. Third, Streamflow useshfnt
optimizations for temporal locality, cache-conscious eydujock
layout and better TLB performance. Fourth, unlike many oktgh
performance allocators, Streamflow allows returning memior
the OS when the footprint of the application shrinks.

ory requests by eliminating inter-thread synchronizatiod all as-
sociated atomic operations during common-case memoreséqu
patterns. Even in the infrequent cases when synchronizétén
tween threads is necessary, it is performed with a single; no
blocking atomic operatidn The front end also includes optimiza-
tions for spatial locality, temporal locality, and the adance of
false-sharing.

The back-end of Streamflow is a locality-conscious page man-
ager. This module manages contiguous page blocks, eachidi wh
is used by the front-end for the allocation of objects thdohg
to a given size class. The page manager allocates pagessblock
within superpages to achieve contiguous layout of each plagk
in physical memory, thus reducing self-interference (imithage
blocks) and cross-interference (between page blockskicdkhe.
The use of superpages can also improve the TLB performartte an
reduce page faults in applications with large memory fdotpr
Moreover, the Streamflow back-end facilitates the intemgleaof
page blocks between threads, should the memory demand of eac
thread change during execution.

We describe the front-end multithreaded memory allocator i
Section 3.1 and the back-end page manager in Section 3.2. The
source code of Streamflow can be downloaded fharyp: //www.
cs.wm.edu/streamflow and can be used as a reference through-
out this section.

To our knowledge, Streamflow is the first user-level memory 3.1 Multithreaded Memory Allocator

allocator to control the layout of page blocks in physicahmoey,
using superpages as the means to achieve contiguous @lfocat

3.1.1 Small Object Management

of each page block in physical memory. It should be noted that Objects in Streamflow are classified as small if their sizesdus

superpages are a generic optimization tool and their scapads
beyond just memory allocators [6, 19]. However, since Sugpges

(the size of which is set by the operating system) may subsume
multiple page blocks (the size of which is set by the memory

allocator) a multiprocessor memory allocator using supgeg to
achieve cache-conscious of page blocks has certain desigres

exceed 2 KB (half a page in our experimental platform). Tha-ma
agement of objects larger than 2 KB is described in sectib23In
the following paragraphs we describe Streamflow’s heapitech
ture, the techniques used to eliminate object headers) sijatt
allocation and deallocation procedures and specializpdasti for
recycling memory upon thread termination.

as to how it manages free memory inside each superpage and how ocg heaps:  Each thread in Streamflow allocates memory from

it divides superpages between page blocks from differesats.
Streamflow’s design includes some educated choices fartizie
management and utilization of superpages.

Several of the design goals of Streamflow, in particulaoitsl-
ity optimizations, can be achieved with allocators thdiagifeed-
back from program profiles. For example, earlier work haswsho
that object lifetime predictors and reference traces candeel to
customize small object allocation and object segregafip®d, 23].
Streamflow assumes no knowledge of object allocation anglsacc
profiles, although its design does not prevent the additi@nadile-
guided optimization.

3. Design of Streamflow

Streamflow primarily optimizes dynamic allocation of smali-
jects, which is a common bottleneck in many sequential and mu
tithreaded applications, including desktop, server amnehsific ap-
plications. Streamflow optimizes dynamic allocation fowIta-
tency and scalability, as well as for temporal locality, t&ddo-
cality and cache-conscious layout of data. These optiiizaare
accomplished via the use of a decoupled local heap architet¢he
elimination of object headers, the careful layout of heapsadn-
tiguously allocated physical memory and the exploitatibtarge
pages (superpages). At the same time, Streamflow providels-me
anisms that facilitate both memory transfer between loealpls
and returning memory to the system. As a result, it is notiteas
to pathologic memory usage patterns, such as producetso@rs
ones, that could lead to high memory overhead and pressure.
Streamflow consists of two modules. Its front-end is a multi-
threaded memory allocator, which minimizes the overheaderh-

a local heap. The heap data structure, shown in Figure Xa), i
strictly private; only the owner thread can modify it. As sul,

the vast majority of simultaneous memory management dpagat
issued by multiple threads can be served simultaneouslynaied
pendently, without synchronization. Synchronization ésessary
only when the local heap does not have enough free memorly avai
able to fulfill a request, or during deallocations, when ajecdhis

freed by a thread other than the owner of the heap it was addca
from.

Local heaps facilitate the reduction of allocator-inducaide-
sharing between threads, since memory allocation regbgsti-

ferent threads are not interleaved in the same memory seégmen

This technique cannot, however, totally eliminate falsarsg in
the presence of object migrations between threads [3].

Each thread-local heap consistspaige blocksshown in Fig-
ure 1(b). Page blocks are contiguous virtual memory areash E
page block is used for the allocation of objects with sized fall
into a specific range, which we call abject classin Streamflow,
each object class differs from the previous one by 4 byteis dér
sign provides for fine-grain object segregation and tendsapoove
spatial locality in codes that make heavy use of very sma#aib
[7]. One or more page blocks, organized as a doubly linkédds

2We usecmp&swap (ptr, old_val, new_val),which atomically checks

that the value in memory addreggr is old_val and changes it to
new_val. If the value is not equal told_val the operation fails. The op-

eration may be replayed more than once fif it fails. All modpracessors
offer cmp&swap for 32-bit and 64-bit operands, either as an instructiorsor a
a high level primitive built from simpler instructions, sues load linked-
store conditional.
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Figure 1. Streamflow front-end design. Figure (a) is an overview of aph@nd Figure (b) is the detail for a particular page blodkiwi

that heap.

serve the same object class. A simple page block rotatiategty
guarantees that if there is enough free memory for the altmta

of a specific object class, a page block with available memaity

be found at the head of the list. More specifically, when a page
block becomes full, it is transferred to the end of the ligmigrly,

to free memory inside the page blockréed andunallocated),

iii) An identifier of the owner-thread of the page blocldj, iv) The
head of a LIFO list used for object deallocations to the pdgekb
by threads other than the owner-threaén(otely_freed), and v)
bookkeeping information, such as the number of free objadtse

when an object is freed by the owner of the heap, the page block page block and the size of each object. All the fields in thelbea

it belongs to is placed at the head of the list, if it is not athe
there. The block rotation is a fast operation involving dlyeseven
pointer updates and no atomic instructions.

Page blocks are always page aligned. Their sizes vary, depen
ing on the object class they serve. As a rule of thumb, eack pag
block in Streamflow is large enough to accommodate 1024 tshjec
however minimum/maximum page block size limitations alpe a
ply. There is clearly a trade-off between the number of dbjec
in each page block and the average amount of unused memory
page block may contain. The minimum page block size (16 KB
in Streamflow) allows more than 1024 very small objects to be
packed inside a single page block, given that the size ofe¢he r
sulting page blocks is also small and the additional memory ¢
sumption is not a concern. This amortizes costly heap expans
operations among more object allocations. On the other,ithed
maximum page block size (256 KB in our implementation) Ignit
the memory requirements for page blocks which serve relgtiv
large object classes. Without a limit, page blocks for laoggcts
could otherwise grow up to 2 MB. This limit reduces interniéd-a
cator fragmentation, which is the amount of memory resefred
the system, yet never used inside each page block. Theingsult
page block size is always rounded to the nearest power of two.

The beginning of each page block is occupied by the page
block header. The header consists of all the data strucamds
bookkeeping information necessary for the management ef th
page block. It contains: i) Pointers for linking the pagedito the
doubly-linked list of page blocks for each object classPidinters

a

with the exception ofemotely_freed, are accessed only by the
page block owner-thread, thus accesses and modificatichesé
fields require no synchronization.

Headerlessobjects:  When an object is freed, a memory allocator
needs to discover whether the object is large or small asasetb
size and—if the object is small—the exact page block it oatgd
from. A common technique is to attach a header to each ohject a
encode the necessary information in the header. Someextliis
impose an 8-bytes alignment requirement for certain datestyor
accesses to these data types suffer significant perfornpera-
ties. This limits the minimum memory required for headers8to
bytes and the minimum object granularity supported by tleeat
tor to 16 bytes (including the header). As aresult, the useatiers
introduces two serious side-effects: a) Significant spaeehead,
which can reach up to 300% (12 bytes of overhead for everytdsby
object), and b) less objects can be packed in a single cavheti

a single page, thus hurting spatial locality.

Streamflow eliminates headers from small objects using the B
BOP technique [24]. We introduce a global table with one byte
for each virtual memory page in the system. Accesses to tie ta
can simply be indexed by the page starting address. A sitiigté b
each table cell characterizes objects allocated in thefgppage as
small or large. If the object is small, the remaining 7 bitsased to
encode the disposition—in pages—of the header of the ppegy&
block. This encoding is sufficient for realistic page blodes (up
to 512 KB, considering a page size of 4 KB). As soon as the heade
of the parent page block is available, the memory managealhas



the necessary information to proceed with the deallocatioa 32-

bit address space 1 MB is enough for the BIBOP table (768 KB in
Linux, since 25% of the virtual address space is reservekiarel
memory). In 64-bit address spaces, multilevel trees os tran be
used instead [10], to encode information only for the sedmeh
the address space that are actually used by the applicii®are
currently investigating these options in an ongoing efforport
Streamflow to a 64-bit system. The BIBOP technique allows the
elimination of headers for small objects without introdwgirtifi-

cial segmentation of the virtual address space. The eltmimaf
headers allows Streamflow to better exploit spatial logalfipor-
tunities. It also facilitates the support of arbitrarily alinobjects.

In the current implementation the minimum object grantyas 4
bytes.

Object allocation: When a memory request is received, Stream-
flow directs it to the appropriate object size class in thalbeap

of the thread that initiated the request. In the common chse,
first page block in the list of that size class will have aualdsob-
jects. There are two categories of available objects. THwehave
already gone through one or more allocation/deallocatiaries
populate thefreed LIFO list and are preferred for consequent al-
locations. This design decision, combined with the LIFCaniga-
tion of the list, favors temporal locality, since recentlgatiocated
objects are reused as soon as possible. If#eed list is empty,
Streamflow allocates one of the objects of the page blockidnast
never been allocated before. The beginning of the memoaythet
accommodates such objects is pointed tamhyllocated, which

is a bump-pointer that is forwarded each time by one object.

Object deallocation:  Object deallocations are usually initiated by
the same thread that allocated the object. If this is the, dhse
object is simply inserted—without any synchronization-teithe
freed LIFO of the parent page block that it originated from. If afte
the deallocation the page block becomes empty, it is deéit oy
the page block caching policy which is described later on.
Remote object deallocations are deallocations of an objatt
a thread other than the one that allocated it. Remote dealloc
tions need to be treated differently, since only the owheead
of each page block can modify tHeeed LIFO. In this case, the
object is inserted to theemotely_freed LIFO list of the par-
ent page block. The insertion to the list is performed via a 64
bit atomic cmp&swap operation which simultaneously updates the
remotely_freed LIFO head and checks the owner identified)
of the parent page block to ensure that the page block islbctua
owned by a thread Objects inserted into theemotely_freed
LIFO will be eventually transferred to théreed LIFO by the
owner-thread of the page block. The decoupling of local and r
mote operations is a key design point which drastically oups
the latency and scalability of Streamflow by eliminatingraioin-
structions from the critical path of the most frequent ofiers.
Furthermore, Streamflow uses the minimum number of atomic in
structions for thread-safe remote object deallocations.

their reuse will be delayed until it is absolutely necessargen
the parent page block runs out of free memory. This strateigy m
imizes the number of atomic operations required for acngsie
remotely_freed list. If, however, the page block at the head of
the object size class is full and itemotely_freed list does not
contain any objects, the page block is rotated to the endeolish
and a new page block is fetched from the cache or requestad fro
the page manager.

Thread termination: Whenever a thread terminates, Streamflow
ensures that the free memory of partially free or locallyheat
page blocks in its heap will be made available to the othexaitis.
Empty and partially full page blocks are handled by the aaghi
policy described below. If one of the page blocks appears toily
its remotely_freed list is checked for remotely freed objects. If
the list is not empty, the objects are removed—with a sirgjtamnic
cmp&swap operation—and transferred to theeed list. Following,
the page block is managed by the caching policy as a comypletel
or partially free block. If this is not the case, the threadldess the
page block as “orphaned,” by setting thé of its owner toNULL.
Any orphaned page block can be “adopted” and attached to the
heap of the first thread that deallocates an object origigdtom
it observes that the page block is orphaned.

The id is set toNULL with an atomic 64-bitcmp&swap op-
eration, which simultaneously verifies that themotely_freed
list remains empty. Should the instruction fail, one or moke
jects have been freed into thiemotely_freed LIFO after the last
check, so the page block is no longer full. The atomic openati
eliminates the possibility of declaring a page block as angu af-
ter all its objects have been returned to #otely freed list.
The free memory of such a page block would never be reused,
since no thread would ever have the opportunity to obseras it
orphaned.

Page block caching: Page block caching is the boundary that
separates the multithreaded memory allocator front-erti tha

page manager back-end. When the allocator needs a new page
block, it first checks a thread-local cache, then the glohahes,

and if no cached page blocks of the correct size are found, it
passes a request on to the page manager. The local caches are
synchronization-free LIFO lists, and the global cache mckifree

LIFO list. The caching layer is the last level at which Strélam
applies lock-free, non-blocking synchronization. Itsgmse is to
relieve strain on the page manager.

Page blocks in local caches are organized according to their
size. Due to the minimum size, maximum size, and power of two
size limitations for page blocks, multiple object classes page
blocks of the same size. Orphaned page blocks whose original
owner thread has terminated are placed on a global listhwhigst
preserve the page block’s object class, since there drsstik live
objects allocated from this page block. Completely freeedagcks
can be placed on a global free cache upon thread termination,
or when a thread releases a page block and the local cache is

When a memory request can not be served by the page block atoverpopulated. In order to maintain low virtual memory usagur

the head of the appropriate object size class because théjazk
is full, the owner-thread checks tliemotely_freed LIFO for ob-
jects freed earlier to the page block by remote threads.clf sib-
jects exist, they are all removed with a single atonrp&swap op-
eration and transferred to theeed list. The memory request then

proceeds exactly as the common case memory request desscribe

earlier. The lazy reclamation policy of remotely freed alb§e com-
bined with the page blocks rotation strategy, guaranteas rd+
motely freed memory objects will eventually be reused. Hee

3Given thatid andremotely_freed need to be updated by a single 64-
bit atomic operation, they are always placed into 64 cortsecbits in the
page block header.

implementation constrains the population of the local alutha)
caches to one and zero page blocks respectively. Orphamged pa
blocks can always be stored in the global list of orphanedksip
independent of the list's population.

Discussion:  From the discussion so far it is clear that Streamflow
performs the vast majority of memory allocation/dealltmatop-
erations without introducing synchronization. Syncheation be-
tween threads is only required in the infrequent cases oénijote
object deallocations, ii) batch reclamation of remotelgefit ob-
jects, iii) declaration of a page block as orphaned, iv) éidopof

an orphaned page block, and v) page block returns to or rexjues
from the page manager. Even in these cases, with the exaeytio



(v), the synchronization is performed using a single naekihg
atomic operationdmp&swap).

3.1.2 Large Object Management

The management of large objects is significantly simplen that
of small objects. Large object requests are forwarded tijreecthe
operating system. After memory is allocated from the systémm
BIBOP table is updated to indicate that the correspondiniyafi
pages accommodate a large object. Finally, the object fixpde
with a header that contains the object size and the objeetisted
to the application.

Similarly, if the BIBOP table lookup during a deallocatiaen-
tifies an object as large, its header is recovered from thet@&by
right before the object’s base address. As soon as the aipecis
determined, the memory occupied by the object is returneteto
operating system.

3.2 Page Manager

The page manager implements page block allocations anidcieal
tions as needed by the multithreaded memory allocator ifroime-
end of Streamflow. Its functionality is threefold: i) It atlates and
deallocates physical memory from/to the operating systesimg
superpages as the unit of allocation. ii) It allocates pdgekis and
manages space within superpages to achieve contiguogstiio
of each page block in physical memory. iii) It optimizes thege-
ment of multiple page blocks within superpages to avoid eacim-
flicts within and between page blocks residing in the samersup
page.

Most modern processors provide support for multiple page
sizes. For example, Intel’s Itanium 2 provides eleven papess
between 4 KB and 4 GB, Alpha processors provide four page size
between 8 KB and 4MB, while the IBM Power4/Power5, Intel

Xeon and UltraSPARC processors provide two page sizes, th sma
page size of 4 or 8 KB and a large page size of 4 MB. We use the

term superpages to refer to pages of size larger than thdestal
page size on a given architecture.

page blocks and page block adoption is not necessary. Mereov
page blocks with superpage headers do not need to be freed, si
the space they occupy is negligible. As a result, the datetsires
used for the management of page blocks with superpage lsedaler
not need to be replicated with each page block.

Each superpage header includes the disposition of thesagper
in the virtual file which backs the superpage. The page manage
returns superpages to the operating system when all pagksblo
within a superpage are freed. Whenever a superpage is edturn
to the operating system (vieunmap ()), its header is recycled to
the freed LIFO list of superpage headers, however the disposi-
tion of the superpage is preserved in the header. As a rékalt,
page manager can easily identify the dispositions of unedysp-
perpages inside a file, just by reusing recycled headerssijer-
page headers also inclugeev andnext pointers for linking su-
perpages in lists, a pointer to the base virtual addressecuper-
page ép_base), the size (as a power of 2) of the largest contiguous
free memory block inside the superpagexfgest_free_order),
as well as some bitmaps necessary for managing space ihside t
superpage.

Allocated superpages are organized in a hash table, indexed
with the size (as a power of 2) of the requested page blockdJsi
this hash table, the page manager can easily searctbést-fit
superpages, namely superpages where the largest corttifresu
block is as close as possible to the size of the requestell.bloc

Streamflow’s page manager allocates memory within each su-
perpage using a buddy allocator [13, 14]. The buddy allodatws
to reduce memory fragmentation inside each superpageg lagin
the same time faster than first-, next-, and best-fit allosato

4. Evaluation
4.1 Experimental Setting

We evaluated Streamflow on a 4-processor Dell PowerEdge 6650
server, with Hyperthreaded Intel Xeon processors clocke?l G

Superpages enable the coverage of large regions of the vir-GHz. Hyperthreaded Intel processors can execute up to ad&re

tual address space with a small number of pages and TLB en-

tries. Therefore, they can improve performance by redugaging
and TLB misses. The use of superpages can be particulargfiben
cial on simultaneous multithreading (SMT) processors,r@hgore
than one threads share a common TLB and the typically few TLB
entries become a contested resource. More importantlgrgages
enable contiguous allocation of large regions of the viragaress
space in physical memory. Contiguous allocation of largeks of
virtual memory often improves cache performance on praress
with large, physically indexed L2 caches, by eliminatingeduc-
ing interference in the cache within and between page blocks
Streamflow’s page manager is implemented on top of Linux
2.6, which provides support for superpages via a virtuatyse
tem. Streamflow allocates superpages by creating files inithe
tual filesystem, and mapping these files in whole or in partito v
tual memory. An allocated superpage is uniquely identifigdhe
virtual file which backs the page and its disposition withiis ffile.

simultaneously. Each processor has a 4-way associative BIKB
data cache, a 12 KB instruction trace cache, a 512 KB 8-way
associative L2 cache and an external 1 MB L3 cache. The system
has 2 GB of RAM and runs Suse Linux 9.1 with the 2.6.13.4 kernel
and glibc 2-3.3.

To compare the performance of Streamflow against other mul-
tithreaded memory allocators, we evaluated the performanic
Hoard (version 3.3.0) [3], Tcmalloc from Google’s perfomea
tools (version 0.4) [10], our 32-bit implementation of Mage
Michael's lock-free allocator[18] and the thread-safeeditor of
glibc in Linux, which is based on Doug Lea’s memory allocator
[16] with extensions for thread safety implemented by Waotir
Gloger [9]. Hoard, Tcmalloc and glibc use local heaps witH-mu
tiple object size classes. Hoard, Tcmalloc and Michaelscator
use a minimum object granularity of 8 bytes. The glibc altoca
uses a minimum object granularity of 16 bytes. Tcmalloc & th
only multithreaded allocator besides Streamflow that da¢sise

The page manager associates a “header” data structure withobject headers for small objects. We also compared the perfo

each superpage. The collection of superpage headers Hatds-a
essary information for the management of different suggrpaas

mance of Streamflow for a sequential application with thaglitfc
and Vam [7]. Interestingly enough, the glibc allocator usesore

well as for management of space inside each superpage.-Superefficient non-thread-safe implementatiomafiloc () andfree()

page headers reside in page blocks which are dynamicatiyedéd

if it detects that the code is not multithreaded. Streamflowthe

from the operating system. The management of page blocks tha other hand, adapts to sequential codes as a consequensalef it

store superpage headers is almost identical to the manageie
page blocks used for small objects (described in sectiad)3.The
main difference is that, since a page block with superpageédrs

sign, which completely offloads synchronization from thigical
path of sequential allocation. Vam is an optimized, styis#quen-
tial memory allocator that targets the improvement of aggpion

is global and accesses to it are protected by a global page man locality at both the cache- and the page-level. Vam usesjfiaie

ager lock, functionality related to remotely freed objectphaned

object size classes, headerless objects and reap stytatadio



Benchmark| Description Input #Objects | #Objects | Avg. object size| Remote Freeg
(> 2KB) | (< 2KB) (< 2KB) (%)
197.parser | SPECINT2000 English parser (sequential) reference 79760 787M 14b N/A
Recycle Synthetic benchmark, with variable 107 objs./thread 8 107 thread 8b 0.0
object recycling frequency 8b objectsrate=1000
Larson Multithreaded server simulator 5-seconds run 0 2.72M 7b 100
Consume Producer-consumer benchmark 6000 objs/block 8 240M 4b 100
5000 iterations
Knary Hood implementation of a parallel tree building (11,5,0,0) 16 61M 40b 0.00056
benchmark
Barnes Hood implementation of 131072 bodies 17 2.33M 30b 0.79
the Barnes-Hut algorithm d=0.025, 10 its.
MPCDM Multithreaded mesh generation application 10M triangles 338 30M 35b 1.4

Table 1. Benchmarks used to evaluate Streamflow.

Table 1 summarizes the benchmarks we used to evaluatethread-safe allocators to provide fast sequential alionatMost

Streamflow. The table includes the total number of small aibje
(smaller than 2KB) allocated in each benchmark, the number o
large objects, the average size of small objects, and theeper
age of remotely freed objects in the multithreaded bencksnar
It is evident that the vast majority of objects are dealledaby

the same thread that allocated them, even in codes in which ob

jects are accessed by multiple threads. The only excepdianthe
Consumeand Larson benchmarks which are explicitly designed
to stress the allocators under extreme remote memory daallo
tion and reclamation conditions. This property puts Stiftamat
an advantage against other allocators, thanks to its désagre-
moves the synchronization overhead from almost all allonat
and deallocations.

The results of our experiments are summarized in Figuresl2 an
3. We report execution times fdr97.parsey Recycle Consume
Knary, Barnesand MPCDM. Larsonruns for a fixed time inter-
val, so we report its throughput, measured in memory managem
operations per microsecond. For the sequer®al.parserwe re-
port the execution time of both the optimized non-threde;sand
the thread-safe glibc allocator implementation. E®7.parserwe
also report execution times for the custom, hard-codecatito

of the benchmark and Vam. Note that we bypass the custom al-

thread-safe allocators suffer in this aspect because thppse
synchronization overhead, due to unnecessary executiatowfic
instructions, even though there is no contention betweesats in
a sequential program97.parseris also representative of many ap-
plications that use custom allocators for higher perforced#d, 7].
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locator of the benchmark when we measure the performance of Figure 2. Execution time (lower is better) attained by different

Streamflow and the other general-purpose allocators. Th&nm
that all allocations and deallocations are directed tandid.oc ()

and free () calls of the general-purpose allocators rather to the
xalloc () andxfree () calls of the custom allocator of the bench-
mark. For all benchmarks we also report the performance ef th
four thread-safe allocators (Streamflow, Michael’s, Hcand Tc-
malloc). Specifically for Streamflow, we provide three dadanfs:
one for a base implementation which performs decouplingoof |
cal allocation from remote deallocation but no further ldgap-
timizations (labeled “Streamflow headers” in the chartgeeond
from an improved implementation which eliminates objectders,

in addition to decoupling, to improve spatial locality arathe us-
age (labeled “Streamflow wo headers” in the charts); andrd thi
from a complete implementation which includes the superpag
manager and page block layout optimizations (labeled &Btfeow
superpages” in the charts).

4.2 Results and Analysis
4.2.1 Sequential Benchmarks

allocators forl97.parser

The performance of Streamflow with all locality optimiza-
tions is within 8% of the performance of the custom allocaior
197.parserand within 5% of the performance of Vam. Both the
custom allocator and Vam apply bump-pointer memory aliooat
Moreover, the custom allocator changes the semanti¢sf ()
to provide the memory object size to the deallocation fuamcti
Streamflow performs 7% faster than the optimized, sequegtiiie
allocator.

Streamflow outperforms the thread-safe glibc allocator &3
and Michael’s allocator by 40%, due to the fact that the tdtt®
suffer the unnecessarily high—although contention fregeroead
of atomic instructions.197.parsercrashes when executed with
Hoard, and as a result a comparison with Hoard is not possible

The elimination of object headers results in a 15% perfogaan
improvement over the base implementation of StreamflowdHea
erless objects contribute to better spatial locality ahlibe cache-
and page-level. Minor page faults, for example, drop froé\Bto
2.6M. Streamflow without headers is 8.5% faster than Tcrmallo

197.parser: This benchmark is an English language parser bench- which also uses headerless objects. The cost for a comnsan-ca

mark from SPECINT2000 which includes a custom memory allo-
cator. This custom allocator works well for objects allechind
deallocated in a stack-like fashioh97.parserspends more than
40% of its execution time in memory allocation and streskes t
efficiency of object placement in memory as well as the abdft

uncontested memory allocation is 200 cycles for Streamfiom-
pared with 214 cycles for Tcmalloc.

The use of superpages yields an additional 5% execution time
improvement over the base Streamflow implementation. b als
almost completely eliminates minor page faults (just 713yl



from 2.6M) and reduces TLB misses by 2%. The larger page size the number of threads ibarson a particularly desirable property

allows the coverage of the address space with significaathef for real-world multithreaded server applications. The maiason
pages and, thus, reduces the pressure to the OS page mamnager afor Streamflow performance is the efficient page block adwopti
the TLB. strategy upon thread termination. A page block is adoptedh-w

) a non-blocking atomic operation—by the first thread thatlldea
4.2.2  Multithreaded Benchmarks cates an object originating from it. Further deallocatitmthe page
Recycle: This is a custom synthetic microbenchmark that stresses block from that thread are treated as local ones. Thus, theyod
the ability of multithreaded allocators to efficiently pamh simul- suffer even the minimal overhead of lock-free enqueueinthéo
taneous memory management operations by multiple thréads, —remotely_freed queue of the parent page block. _
objects that are created and destroyed locally by eachdhEzech Objects inLarsonare merely allocated and deallocated, being

thread allocates a total af)” objects, the size of which is selected ~accessed only once, immediately after their allocationveéler,
randomly from a given range. The benchmark can simulaterdiff ~ the elimination of object headers enhances the spatialityca
ent memory reuse patterns. Each thread deallocates abjbet®it especially at the page-level. Minor page faults are red(icedhe
has allocated after evergte allocationsratebeing a user-provided 8 threads execution) from 51K to 3.2K, resulting in a thrqugh
parameteRecyclds not expected to scale with more processors (in improvement of 15%.
terms of execution time reduction), since its workload $ealcaled
with the number of threads. Consume: This is a synthetic microbenchmark from the Hoard
Streamflow outperforms glibc by 41%, Hoard by 59%, Michael’s distribution. It simulates produced-consumer appligatjon which
lock-free allocator by 48% and Tcmalloc by 14% in the sequen- memory objects are allocated from one thread and are used and
tial execution ofRecycle In multithreaded executions Stream-  deallocated by other threads. The producers and consuivers |
flow performs significantly better than allocators that eogyn- simultaneously in the system. A single producer thread:atksn
chronization, such as glibc (8%—-39%, avg. 25%), Hoard (11%— blocks of memory, each of which is then deallocated by onéef t
54%, avg. 29%) and Michael's allocator (10%—43%, avg. 22%). n different consumer threads. Memory allocations for a bloak

Its performance is similar to Tcmalloc, which uses threzhl, be performed simultaneously with deallocation of memorjecis
synchronization-free memory caches. from other blocks. The number of threads, the size of theldslaad
Allocators that put synchronization on the critical pathewf the number of allocation/deallocation rounds are specliigthe
ery operation—even Michael's allocator, which uses lodef user.Consumestresses the efficiency of remotely freeing memory
non-blocking synchronization—suffer from synchronieatila- through non-blocking atomic operations and the efficierfdany
tency even during thread-local management operatiortsouajh memory reclamation in Streamflow. The single producer thisa
these operations could be performed independently by éaehd. the main performance bottleneck of the application. As altgthe

Streamflow performs thread-local memory allocation andlolea  execution time ofConsumés expected to increase almost linearly
cation without atomic instructionRecycleis only sensitive to with the number of consumer threads. Moreover, since memory
allocation latency and scalability. Since allocated ofsjeare not objects are simply allocated and deallocated, localitjinuations
accessed in the code, and the memory footprint of the berrdhma cannot be expected to have any effect.

is rather small, it is insensitive to locality optimizatgrAs a result, Streamflow performs 25% to 1.3 times (avg. 77%) better than
.the. p(larfor.mance of the three versions of Streamflow is praltyi glibc and 60% to 8.7 times (avg. 5.1 times) better than Holard.
indistinguishable. also outperforms Michael’s lock-free allocator by 74% t6 @mes

d (avg. 1.8 times) and Tcmalloc by 4% to 3.7 times (avg. 2 times)
Multithreaded allocators based on locks, such as glibc and

Hoard must acquire and release at least one lock per detidioca

operation. Tcmalloc and Michael’s allocator minimize thteets

of producer-consumer memory usage patterns by using thoeatl

caches and atomic, lock-free operations respectivelyhdrcase of

Streamflow, each remote memory object deallocation is pedd

at the cost of a single, non-blocking, atomic operation. &doer,

the lazy memory reclamation strategy amortizes the coseof r

claiming the freed memory to that of a single atomic operatay

all the objects in theemotely_freed queue of the page block.

Larson: This is a benchmark which simulates a multithreade
server [15]. Objects allocated from a given thread are seleédy
another thread. The thread that performs the deallocatiosdally
spawned after the termination of the thread that perforrhedht-
location. We experimentally found that this is the case irB96
of all deallocationsLarson thus, stresses the page block adop-
tion functionality of Streamflow. The allocating thread i#l slive
in 3.2% of the deallocations, which activates the remote orgm
object deallocation and reclamation modules of Streamfldve
code runs for a fixed time interval and reports the attainealtyh-
put in terms of memory management operations. The number of
threads spawned is proportional to the speed of memoryaaitot ] ) ]
and deallocatich Larsonis sensitive to multithreaded allocation ~ Knary:  Hood benchmark which builds trees of arbitrary depth
latency and scalability, as well as to the performance ofteen- and fan-out degree an_d associates a user-_deflned amountlof wo
ory recycling mechanisms of the allocator upon thread teation. per tree node [1Knary is sensitive to allocation latency and scal-
Streamflow, with all locality optimizations enabled, outpe  ability, but not to locality, because the work performed gener-
forms Hoard by 56% on one thread and by more than 5.5 times ated tree rjode is typically small. It stresses the abilitgltafcators
range from 27% to 7.73 times (4.53 times on avg.). Streamflow deallocation requests by multiple threads.

achieves 1.9 to 2.6 times higher throughput than TcmallGe4(6 Streamflow outperforms glibc by 70% to 1.5 times (avg. 88%).
on avg.). Tcmalloc outperforms Streamflow only in one caserw !t also provides significant performance improvements éiard,
Larsonis executed sequentially. Finally, Streamflow proves 78% Tcmalloc and Michael's allocator (64%, 73% and 76% on averag
to 5.6 times (3.5 times on avg.) more efficient than Michaetk- respectively). Tcmalloc performs similarly with Streamflonly
free allocator. Note that Streamflow scales almost lineuaiily whenKnary is executed sequentially.

The performance improvements can be attributed directly to
4We setl_arsonexecution time to a relatively small value in order to limit ~ the design of Streamflow, which minimizes—and in most cases
the number of spawned threads below the threshold whiogietrigthe fork- eliminates— synchronization between threads performingils
bomb protection mechanism in the operating system. taneous memory management operations.
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Figure 3. Execution time (lower is better) or throughput (higher istég attained by different allocators.

Barnes. Hood implementation of the N-body Barnes-Hut force
calculation algorithm [1]Barneshas only limited sensitivity to al-
location latency, particularly during the first iteratidim{e step) of
the code, in which the main application data structures eated
and initialized. The benchmark provides limited opportiasi for
exploiting spatial and temporal locality.

Streamflow improves the execution time Barnes4.9% on
average over glibc, 3.6% over Tcmalloc and 4.3% over Hoard.
Barnes however, is the only application in which Michael’s lock-
free allocator outperforms Streamflow by 2.6% to 4.6% (3.6% o
avg.).

The low intensity of memory management operations limigs th
performance improvements that can be attained by usingrdift
memory allocators. It should be noted, though, that the dse o
superpages by Streamflow, yields a 2% performance impraveme
and a 13% reduction of minor page faults (from 9.1K to 7.9K).

MPCDM: This is a guaranteed-quality multithreaded mesh gen-
erator based on the Delaunay method [5]. For realistic prabl
sizes, it allocates hundreds of millions of small objects (§tes
on average) which represent triangles and points in a méghalf
gorithm deletes triangles that do not satisfy quality cidteet by
the user, as well as some of their neighbors. The resultingtyem
area is then re-triangulated. After the re-triangulatioronsists of
at least as many triangles as those deleted. As a result theme
footprint of the application increases monotonically. Hpgplica-
tion offers opportunities for temporal and spatial logatiptimiza-
tions, stresses allocator memory reuse, and is sensitivetoory
operation latency and allocator scalabillf§PCDM's scalability is
limited by the frequent synchronization between its thsedidcan

serve as a case study of the extent of benefits that can beeaktai
by efficient memory allocators, in the presence of otheiémtcks,
unrelated to memory management.

The fully optimized Streamflow implementation outperforms
glibc by 18% to 45% (32% on avg.). The improvements against
Hoard and Michael's lock-free allocator range between 12fb a
50% (22% and 42% on average respectively). Streamflow also pe
forms up to 88% better than Tcmalloc (36% on average). ltgarcl
that Streamflow can benefit complex scientific applicatioitb in-
tense memory management requirements, sudhRGDM. Espe-
cially in the presence of frequent, application-induceacsyoniza-
tion operations, Streamflow’s mostly synchronizatiorefaesign
practically eliminates additional, allocator induced totiion be-
tween threads.

The elimination of headers allows more small objects to
placed inside a single memory page. It thus favors spatalily at
the page-level, reducing minor page faults by 49% (from 247K
127K) in the 8-threads execution. This is reflected in a 4%oper
mance improvement over the base Streamflow implementatian.
use of superpages has similar effects. Minor page faultsmaited
to just 888 and performance improves by 6% compared with the
base implementation.

be

4.2.3 Memory overhead

An important metric for the quality a multithreaded memdigea-

tor is the memory overhead it introduces, quantified by thewarh
of virtual memory reserved by the allocator for a given sirest
memory requests by the application. Table 2 shows the mawimu
virtual memory footprint of the seven benchmarks when eteztu
with all allocators. The memory usage of each applicatios mea-
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197.parser | 17 19 - 18 27 16
Recycle 20 23 19 19 19 28
Larson 1487 | 1598 | 289 685 | 235 | 196
(stacks) 1473 | 1581 | 273 671 | 218 | 174
Consume 23 28 21 22 23 25
Knary 28 31 25 26 27 32
Barnes 45 47 46 41 43 46
MPCDM 530 538 1032 | 530 | 630 | 610

Table 2. Maximum virtual memory footprint of the benchmarks
(in MB) when executed with different multithreaded allcmrat
Multithreaded benchmarks are executed with 8 threads elicdlse

of Larsonwe also report the memory required just for thread stacks
in each casel97.parsercrashes when executed with Hoard, so no
footprint value is reported.

sured by querying thgproc filesystem for each process’ total vir-
tual memory consumption every tenth of a second for theiifet
of the application. The value reported is the maximum olexkfor
each application / memory allocator pair.

With the exception ofLarson Streamflow achieves virtual
memory footprints smaller than glibc and comparable to thero
allocators.Larson continuously generates threads that perform a
constant number of allocation and deallocation operatispawn
new threads, and then terminate without ever being joinatteS
Larsonruns for a fixed time period, the number of threads spawned
by the application is proportional to the achieved rate tdca-
tion and deallocation operations. Tracing system callfopsied
by the application revealed that before each thread géoer&tl3
memory pages (2052 KB) are allocated for the thread’s sthod.
system calls trace also revealed that—as expected—sineadth
are never joined, their stacks are never freed and reused.rés
sult, the virtual memory footprint of the application is dimeted
by thread stacks. In fact, the virtual memory footprint gsawono-
tonically during the execution life of the application, Wwia rate
that is linearly related to the throughput of memory manag@m
operations achieved by each multithreaded memory manaaer.
ble 2 reports—in the case of Larson—the total maximum virtua
memory footprint of the application, as well as the maximum v
tual memory footprint of thread stacks. The latter is calted by
multiplying the total number of threads generated by thdie@p
tion by 2052 KB (the stack size).

It is worth noting that Streamflow performs well even with
Consume which is specifically designed to stress multithreaded
allocators that use thread-local heaps. Allocators whaghatrictly
thread-local heaps are sensitive to memory blowup undeiuyeer-
consumer memory usage patterns.

5. Discussion and Future Directions

most important ones are severe fragmentation for smallrarog

and unjustified memory pressure, which may occur in a muakipr
grammed system in which some of the programs make extensive
use of superpages but utilize little space within each page.way

to address these problems is to leverage operating systgporsu

for dynamic superpage management [19].

Although Streamflow provides support for relinquishing @ag
blocks back to the operating system, it does not do so addptiv
as a reaction to memory pressure [7]. Extending Streamfldwv wi
mechanisms and policies to detect memory pressure and-proac
tively release memory to prevent thrashing is left as futunek.

Streamflow was designed under the assumption that dynamic
feedback such as actual object sizes and lifetimes is ndabia
to the allocator [11, 22]. Such profiles enable customiratisuch
as reap-style object deallocation of short-lived objedt$],[ or
object segregation based on access frequency and lengtijeat o
lifetimes [22]. In general, profiling information has notdreused
so far in multiprocessor memory allocators and it is a path we
would like to explore in the near future. Profiling may proeeful
for customizing Streamflow’s allocation and deallocatiatigies
for exploiting more aggressively specific types of localétych as
locality in streams of accesses to objects from differesss.

As multicore and simultaneous multithreading processers b
come commonplace, it is important to consider the implaratiof
these processors on multithreaded memory allocation. $bthe
related considerations were discussed in [17]. The maihectge
for a locality-conscious allocator for chip multiprocesse mak-
ing good use of a large shared on-chip cache. The fact treddkr
can share data through a cache requires the allocator toneizst
its page block management policies so that page blocks dielpn
to different threads that run on the same processor areatdidc
contiguously and conflict-free, if possible. Streamflowesign en-
ables this optimization, pending the addition of feedbackifthe
operating system so that the allocator becomes aware ofabe-p
ment of threads on execution cores at runtime.

6. Conclusions

Multiprocessor memory allocators have so far capitalizedaal-
ability. Optimized, sequential allocators, on the othendhgplace
emphasis on locality. In this paper we have presented Sfi@am
a high-performance, low-overhead thread-safe memorycatio
also designed to favor locality at several levels of the mgrheer-
archy.

Streamflow’s design decouples local and remote operations i
order to eliminate synchronization for most memory allarabp-
erations, while still avoiding memory blowup which strictbcal-
heaps suffer from. In order to further reduce latency, atickyo-
nization operations are non-blocking and lock-free. Tlealable
and locality-conscious design enables Streamflow to parfmm-
parably to optimized sequential allocators, yet be ususitiyif-
icantly faster than other multiprocessor allocators. Ehgoper-
ties are consolidated in a unified segregated heap desigranst
flow also improves cache-, TLB-, and page-level locality céae-
ful layout of heaps in memory, careful reuse of freed objecis

Streamflow uses superpages as a tool to avoid cache conflictsthe exploitation of superpages. Put together, these piepenake

through the allocation of page blocks directly in physicam
ory. The use of superpages also provides the necessargtinfra
ture to investigate cache-color aware placement of pagekblo
and demonstrate the potential of multilevel locality opations
within a scalable memory allocator. However, imposing tee af
superpages in all programs has certain disadvantages. &dtre

5 /proc is a virtual filesystem available on most UNIX-like operatisys-
tems that exposes information from the OS kernel to usel-Ewuntime.

Streamflow an attractive unified framework for sequential par-
allel memory allocation and a useful tool for taming the ever
increasing memory latencies in codes that rely heavily oradyic
memory allocation.

The design space for locality-conscious multiprocessanorg
allocators is vast. Streamflow represents a realistic pairthis
design space and a step in the direction of composing aéaptiv
memory allocators with sufficient self-customization daiptes
for multiple design goals, such as locality and parallelism
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