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ABSTRACT

Distributed stream computing has emerged as a technology
that can satisfy the low latency, high throughput demands
of big data. Stream computing naturally exposes pipeline,
task and data parallelism. Meeting the throughput and la-
tency demands of online big data requires exploiting such
parallelism across heterogeneous clusters. When a single
job is running on a homogeneous cluster, load balancing is
important. When multiple jobs are running across a het-
erogeneous cluster, load balancing becomes critical. The
data parallel regions of distributed streaming applications
are particularly sensitive to load imbalance, as their overall
speed is gated by the slowest performer. We propose a dy-
namic load balancing technique based on a system artifact:
the TCP blocking rate per connection. We build a func-
tion for each connection based on this blocking rate, and
obtain a balanced load distribution by modeling the prob-
lem as a minimax separable resource allocation problem. In
other words, we minimize the maximum value of these func-
tions. Our model achieves local load balancing that does
not require any global information. We test our model in
a real streaming system, and demonstrate that it is able to
detect differences in node capacities, determine the correct
load distribution for those capacities and dynamically adapt
to changes in the system.
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The amount of data that must be processed and analyzed
is increasing past the ability of conventional means to han-
dle it, a phenomenon commonly referred to as big data. On
a systems level, processing big data online requires highly
parallel runtimes that can maintain low latencies and high
throughput. For application developers and system adminis-
trators, such systems must provide meaningful abstractions
that allow writing high performance, massively parallel ap-
plications which can be easily deployed to large, heteroge-
neous clusters.

Distributed stream computing has emerged as a technol-
ogy which can meet these needs, with many examples from
industry and academia [26, 32, 1, 19, 4]. Developers can
express applications as dataflow graphs, which naturally ex-
pose the inherent pipeline, task and data parallelism in the
solution. The distributed runtime system is then responsible
for executing the application in an efficient manner.

In IBM Streams [16], developers express dataflow graphs
in SPL [14], using the abstractions of operators, streams
and tuples. Operators are the logical unit of computation
which process structured data items called tuples. Opera-
tors within an application communicate through streams of
tuples. Through these abstractions, application developers
are saved from having to directly deal with the complex-
ity of distributed, heterogeneous clusters. Instead, they can
depend on the high performance runtime that is a part of
Streams, which can automatically exploit the various levels
of parallelism exposed by the stream programming model.

The Streams runtime must be able to dynamically adapt
to a variety of cluster types and loads. The runtime ex-
ecutes operators in processing elements (PEs). Of critical
importance are the data parallel regions, where the runtime
replicates these PEs. Inside data parallel regions, each PE
processes a subset of the total tuples. These subsets are de-
termined by a splitter, which is responsible for routing tuples
to parallel worker PEs. In the presence of imbalanced ca-
pacities among the compute nodes, the splitter must balance
the load among worker PEs to maintain high performance.

Dynamic load balancing in a distributed streaming sys-
tem has several unique challenges. The data parallel regions
must maintain sequential semantics [23]. In a streaming
context, sequential semantics means that tuples must exit
the data parallel region in the same order that they would
have if they had all been processed by a single PE. Enforcing
sequential semantics requires performing an in-order merge
as tuples exit the parallel region. As a result, the perfor-
mance of the entire region is gated by the performance of its
slowest worker. Because of this merge, all connections will
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see the same throughput, which means that per-connection
throughput at the splitter is not a useful metric for our prob-
lem. We must find another metric to infer PE capacity.

Metrics available in the worker PEs themselves also
present problems. The throughput metrics from the work-
ers present the same problems as the throughput observed
from the splitter. Per-tuple absolute timings of the costs in
each worker could work, but such timings are invasive. A
secondary problem is correlating observations on the worker
with decisions made by the splitter. It is possible with the
right protocol, but it depends on communicating over the
network and coordinating distributed processes that are po-
tentially overloaded. For our problem, as such communca-
tion becomes more difficult, it also becomes more important.

To avoid such issues, we use a metric that is available
locally at the splitter. It is an artifact of the system itself:
each connection’s blocking rate. While our implementation
uses TCP connections, the concept of a blocking rate should
apply to all transport mechanisms. The blocking rate is the
most direct proxy for each worker’s service rate available
locally at the splitter.

Calculating the blocking rate is cheap, which means that
we are not harming performance while trying to improve it.
However, the blocking rate itself does present an additional
challenge: only one connection is likely to block during a
sampling period. Hence, we will receive very little data dur-
ing each such period.

We have designed, implemented and tested a model that
overcomes these challenges. First, we build a blocking rate
function, Fj, for each connection j. The value of Fj(wj)
yields the amount of blocking that connection j is predicted
to experience when it is given a fraction w; of the total tuples
by the splitter. We model load balancing as a minimax
separable resource allocation problem where we minimize
the maximum across all F} such that Zjv:1 w; = 1 while
respecting any minimum and maximum change constraints
in w; per connection. The work of Diao et al. [6] showed that
such systems can be accurately modeled with either control
theory or optimization techniques.

Our experimental results show that this technique works
well in practice in a distributed streaming system. We show
that our model can detect differences in capacity due to both
exogenous load and imbalance caused by heterogeneous com-
pute nodes. It achieves stability with both load imbalance
and equal capacity. Further, through an exploration mech-
anism, we show that it adapts to changes in the system.

This paper makes the following contributions:

e The blocking rate metric, both in how we derive it from
our system and in how it behaves. As far we know, this
paper is the first to propose using the blocking rate of
the underlying transport layer in a distributed system
to perform load balancing.

e Analysis and description of a model based on the
blocking rate.

e Experiments in a real system which demonstrate the
stability and correctness of our model.

2. DISTRIBUTED STREAM COMPUTING

Our platform is a research prototype of IBM Streams [16],
a high performance streaming system which executes asyn-
chronous, distributed streaming applications. The program-

Figure 1: Sample streaming application running on IBM Streams.

ming language for Streams is SPL [14], a language that nat-
urally exposes pipeline and task parallelism.

SPL applications are expressed in terms of operators and
streams, where the operators express a computation, and
different operators are connected by streams. Each stream
contains tuples of the same type. Tuples are structured data
items, similar to a row in a relational database. Operators
consume a tuple from an input stream, perform some com-
putation on it, then potentially emit a result tuple on an
output stream, to be processed by a downstream operator.

Different operators can execute different tuples in parallel.
Hence, by arranging operators in simple chains, developers
can naturally express pipeline parallelism. If developers send
the same tuples to different operators, they have expressed
task parallelism. The compiler and runtime system in our
research prototype of Streams' are further able to determine
where there are data parallel regions.

Our runtime system executes collections of operators in a
Processing Element, or PE. Each PE maps to an OS process,
and can be executed on different physical machines in a net-
work. PEs can contain an arbitrary number of operators,
executed by an arbitrary number of threads.

Figure 1 shows a sample application as it would execute
on the Streams runtime. PEs are represented as rounded
squares, and streams are represented by the arrows connect-
ing them. The arrows point in the direction of the flow of
tuples, hence, in Figure 1, the tuples flow from Src to Sink.
All of the PEs, A—G, execute in parallel, exploiting pipeline
parallelism. PEs B and C are an example of task paral-
lelism, because they receive the same tuples, yet perform
different operations.

PEs Fi1—F are a data parallel region. We assume that all
copies of F' are stateless; the other PEs in the application
may have state. In our context, stateless means that the
PE does not “remember” anything about each tuple it pro-
cesses; stateless PEs are pure functions that, given a partic-
ular input tuple, will always produce the same output tuple.
There is a splitter at E which splits the tuple stream. Each
F; receives only a subset of the total tuples, thus exploiting
data parallelism. There is a merger before G. The merger
ensures that the tuples, which may have been processed out-
of-order, are put back in-order. Said differently, the merger
is required to maintain sequential semantics: Tuples must
exit the parallel region in the same order they would if there
was only one replica of F.

Problem Statement

Assuming that all F; are stateless PEs, we want to bal-
ance the load across them when each F; may have differ-
ent capacities. Capacity differences may be caused by many
factors, including load external to the application, assign-

I The production version of IBM Streams enables programmers to an-
notate their operator invocations to indicate parallel regions. Because
programmers manually create parallel regions, the production version
of Streams does not maintain tuple order.



ments to heterogeneous processors, and resource constraints
on hosts. In the context of our streaming system, load bal-
ancing means that the splitter must decide which F; to send
each tuple to based on the load and capacity of the node
assigned to that PE. We want to accomplish load balanc-
ing locally at the splitter, without querying the worker PEs
about their status—in distributed systems, solutions that
do not require global information and control are easier to
implement and scale. Finally, the means by which we ac-
complish load balancing must not itself negatively impact
performance.

Note that a general load balancing solution for an entire
streaming application is not covered by our problem state-
ment. A general solution would consider all operators, not
just those in data parallel regions, and would consider mov-
ing operators and PEs across hosts. However, addressing
our specific problem still has value inside of a general so-
lution. A general solution would be limited to considering
which PEs should run on which hosts; it would not be able
to take advantage of the property of stateless data paral-
lel regions that they can route any tuple to any connection.
The best a general solution can achieve may still have some
imbalance that intelligent tuple routing can alleviate.

3. BLOCKING TIME AND RATE

The metric that our model uses is the blocking rate per
TCP connection, which we calculate from the cumulative
blocking time. In this section, we explain how we measure
cumulative blocking time, how we use it to calculate the
blocking rate, and discuss its suitability as a metric.

3.1 Implementation

The data transport layer establishes a TCP connection
for every connected PE. The splitter uses these TCP con-
nections to send all tuples to the PEs in the parallel region.
If the parallel worker PEs process tuples slower than the
splitter sends them 2, then eventually an attempt to send a
tuple on a TCP connection will block. When a TCP send
blocks, we record how long it blocks.

We use two mechanisms to record the blocking time. First,
when sending a tuple, we issue a send system call on a TCP
socket with the flag MSG_DONTWAIT. This flag ensures
that if the kernel would block while trying to write data into
that socket’s buffer, it immediately returns with a value in-
dicating so. If a send would have blocked, we record that,
and then issue a select system call on that socket, passing in
a valid time-out object. When the socket’s buffers are free so
that it can send data, the select call returns. On Linux sys-
tems, select also writes the amount of time the process was
blocked into the time-out object. We maintain a counter for
each connection which tracks the cumulative blocking time
on that connection. After each call to select, we increase this
counter by the amount of time the system call blocked. In
this manner, we are able to track the cumulative blocking
time per each TCP connection.

Figure 2 shows the idealized behavior of the cumulative
blocking time over time for a particular connection. The
cumulative blocking time is reported every second, and con-
stantly increases until it is periodically reset by the data
transport layer. These increases are not actually useful for

2If the splitter is the bottleneck, the connection will not block. How-
ever, in this case, load balancing is not required.
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Figure 2: Idealized calculation of per-connection blocking rate.

our model per se, but the rate of increase is. So to cal-
culate the blocking rate over time, we periodically sample
the cumulative blocking time from the data transport layer.
We then take the differences between subsequent cumulative
blocking values to obtain estimates of the blocking rate over
that period. These turn out to be quite stable for a partic-
ular system load, and can be thought of as first derivatives
of the cumulative blocking time with respect to time, as
shown in idealized form in Figure 2. We use an appropri-
ately smoothed single blocking rate value in our model.

Other streaming systems could still use the blocking rate,
even if they choose to do work during the blocking time. In
our implementation, we perform a non-blocking send, and
then block anyway. It is not necessary to actually block; it
is only necessary to find some means of recording how long
the socket was unable to send any data. When our imple-
mentation blocks, it is not performing any useful work. Over
time, the load balancing scheme mitigates the blocking time
by making it more rare. However, other implementations
of determining the blocking rate could perform useful work
during this period, provided the streaming runtime system
is designed for asynchronous sends.

3.2 Discussion

The blocking rate is a simple yet effective metric. In our
system, we believe it to be the most direct proxy for deter-
mining how much load an operator in a PE can handle. The
most effective way to determine how much work something
can handle is to give it work, and observe how well it handles
it. The blocking rate is that observation.

Streams applications depend on backpressure to regulate
the amount of data in-flight, and we can compute the block-
ing rate because of backpressure. Streaming systems which
do not have natural backpressure often have to devise some-
thing like it to avoid using unbounded amounts of mem-
ory [17]. In Streams, backpressure occurs as a natural result
of the flow of tuples. If an operator in a PE is a bottle-
neck for the application, it will frequently be busy working
on a tuple and unable to accept the next tuple from the
transport layer. The upstream operator will block, which is
indistinguishable from being busy working on a tuple, and
the backpressure will propagate back up towards the source.

The amount of time that a PE is unable to send the next
tuple to the TCP layer is the most direct measurement of
this busy period from the perspective of the upstream PE.
Computing the change in this time, the blocking rate, tells
us how busy the downstream PE is given a certain amount
of the load. In queuing theory terms, this calculation is
effectively its service rate. All other application and system
metrics (per-operator and per-PE throughput, processor and
disk utilization, bytes sent and received from the network,
time spent processing each tuple) do not connect the amount
of load a PE receives with its ability to handle that load.



In our discussions and explanations in this paper, we re-
fer to buffers and queues between the splitter and worker
PEs. We stress that these are not added by our technique,
or even by the Streams runtime. These buffers exist in the
operating system kernels, networking cards and switches be-
tween physical machines. They are inherent to how modern
computer systems communicate. Our approach is to explic-
itly reason about them, as they are a necessary part of any
distributed streaming system.

While we have presented a blocking rate implementation
that exploits the particulars of TCP connections, we believe
that the concept applies to any streaming system which uses
backpressure to regulate the flow of data.

4. DESIGN CHALLENGES

Each of the following challenges are present in a dis-
tributed streaming system. They informed the direction we
took in order to model the problem, as the model needed to
address them directly, or be robust to them.

Figure 3: Parallel region with three PEs. The boxes on the edges
are queued tuples, implying that F5 is slower than F} and F3.

4.1 In-order merges

Most parallel regions have an in-order merge at the end?,
as shown in Figure 3. Even though the splitter sends tuples
to worker PEs to be processed in parallel, when those tuples
exit the parallel region, they must do so in the same order
they arrived at the splitter. In-order merges are required
to maintain sequential semantics. That is, the tuples should
appear downstream in the same order that they would if the
PEs in the parallel region were not replicated and executed
in parallel.

As a result of the in-order merge at the back of parallel
regions, the splitter’s connections in the front are not in-
dependent. Figure 3 demonstrates the implication of the
merge. The boxes on the edges represent tuples that have
been sent but not yet processed by the receiving PE. In our
example, F» is much slower than the other parallel worker
PEs. As a result, even though workers F; and F3 have com-
pleted processing many tuples, those tuples are stuck in the
merger’s queues—the merger can only send tuples from Fi
and F3 downstream when it has received the corresponding
tuples from F» that preserve the sequential order.

The presence of the in-order merge makes load balancing
even more important, as the overall performance of a parallel
region is gated by its slowest performer.

4.2 Drafting

One difficulty with using the blocking rate as a metric is
the phenomenon we call drafting. Our splitter has a single
thread of control; the same kernel thread is used to send
tuples to all worker PEs in the parallel region *. As a conse-
quence of this design choice, during a measurement period

3Some parallel regions end without merges, in parallel sinks.

4 .
‘We don’t use a separate thread for each connection for two reasons.
One, separate threads would introduce a resource cost that is linear in

only one connection is likely to experience blocking, even if
all of the connections can handle the same amount of load.

To understand why drafting happens, consider the sim-
ple example of a round-robin splitter sending tuples to three
parallel workers, each worker capable of handling the same
amount of load. Eventually, the splitter may block when
trying to send a tuple on its TCP connection to a paral-
lel worker. Suppose, for example, that connection 2 blocks.
While the splitter is blocked waiting for the buffers for con-
nection 2 to clear, all of the other buffers for the other
connections also have the opportunity to clear. When the
buffers for connection 2 are finally clear, the splitter success-
fully sends a tuple on connection 2. The splitter next sends
a tuple on connection 3, and it is very unlikely to block
on that connection—any amount of time that is sufficient
for the buffers of connection 2 to clear is sufficient for the
buffers of connection 3 to clear, given equal capacity. The
same is true for connection 1, next in the round-robin or-
der. Eventually, as the splitter once again distributes tuples,
the probability of blocking will start to increase. However,
connection 2 has had the least amount of slack-time since
the first tuple being sent, so when the splitter does block,
it is most likely to block on connection 2. The splitter and
connection 2 are in a synchronized rhythm, and we call con-
nection 2 the draft leader. The point is that the draft leader
is likely to change less frequently than the measurement pe-
riods.

This phenomenon is similar to how cyclists and race-car
drivers will draft behind a leader, with the leader bearing
the brunt of the drag.

Drafting presents a challenge to load balancing. If we only
look at instantaneous information, and we observe a connec-
tion that experiences a high blocking rate. It is impossible
to determine if that connection has a lower capacity than its
siblings, or if it is merely the draft leader. This fact implies
that any attempt to model our system must have a notion
of history to overcome this limitation in the available data.

4.3 Per-connection throughput

Most people’s intuition is to use throughput as the funda-
mental metric, but throughput is not useful for our problem.
If, say, the splitter is distributing tuples by basic round-
robin, then the throughput on all connections will be the
same. If the splitter sends 3 tuples to one connection for
every 1 tuple to another, their relative throughputs will al-
ways be 3:1. This counter-intuitive result is a consequence of
having to merge the tuples at the end of the parallel region.

To understand why per-connection throughput has no ex-
tra information, once again consider the situation in Fig-
ure 3, where the splitter sends the same amount of tuples to
each connection. As explained in the previous subsection,
the splitter has a single thread of control. This thread will
periodically block when trying to send tuples to F». Because
F5 is slow, its TCP queues for receiving tuples will fill up,
causing the splitter’s TCP queues for sending tuples to that
connection to also fill up. We call this phenomenon back
pressure: in a streaming pipeline, the steady-state through-
put of the entire pipeline is that of its slowest member.

In any given period of time, the splitter will spend a dis-

the number of parallel worker PEs. Two, if the thread that processes
a tuple is different from the thread that sends the tuple, there must
be a queue in between them. Using that queue would introduce an
additional copy, increasing latency and the cost of parallelism.
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for each connection j,
measure cumulative
blocking time at w;

for each connection j,
compute blocking
rate at WJ

for each connection j,
incorporate new blocking
rate at w; into history

for each connection j,
monotonize the raw data  create Fi(w;) from

for each connection j, optimize across all Fj(w;)

monotonized data

Figure 4: The steps to achieve local load balancing.

proportionate amount of time blocked on connection 2. It
will easily send tuples on connections 1 and 3. But even
though it easily sends tuples on connections 1 and 3—it
rarely ever blocks on those connections—it will send the
same number of tuples to all connections in a given period
of time. Hence, throughput is not useful for our problem,
but blocking time is.

A different, but equally correct, implementation could in-
stead block at the merger; it is an artifact of our implemen-
tation where we block. But we fundamentally have to block
somewhere in order to maintain order. It is the requirement
to maintain tuple order that causes per-connection through-
put to have no information.

4.4 Blocking is a rare event

A curious consequence of how we record blocking time (as
explained in Section 3) is that we actually elect to block.
That is, we detect when a TCP send will block, and then
we block anyway, just making sure to record how long we
block.

The obvious question is: Why block? Why elect to do
nothing? Instead, we could send tuples to the other con-
nections, thus achieving load balancing at the data trans-
port level. We experimented with a data transport level
re-routing approach that does exactly that.

The intuition behind the re-routing approach is appeal-
ing: only send tuples to connections that can currently han-
dle them. If a connection blocks, try sending that tuple
to another connection, hence distributing the load based on
current capabilities.

This intuition, however, is naive. The fundamental prob-
lem with the approach is that blocking is a late indicator
of congestion. In an experiment with two PEs, where the
base cost of processing a tuple is 1,000 integer multiplies,
and one of the PEs is 100x more expensive than the other,
the re-routing approach makes no discernible difference in
throughput versus basic round-robin. It only re-routes 0.5%
of the tuples. When the base tuple cost is 10,000 integer
multiplies, it does make about a 20% improvement in total
throughput, while re-routing about 7.5% of the total tuples.
This improvement, however, is not nearly enough, and it
only appears when the base tuple cost is high. We require a
more general solution with larger improvements.

The reason that the data transport level re-routing ap-
proach does not work in general is that blocking is a rare
event, even in the presence of hugely disparate capacities.
This fact is caused by the numerous system buffers between
two processes that execute on different hosts in a network.
By the time a TCP connection for an overloaded PE blocks,
it already has at least two system buffers worth of unpro-
cessed tuples (locally on the splitter and remotely on the
worker). Those tuples still take 100x as long to process,
and because of the ordered merge, total throughput suffers.

There are two lessons we draw from this experiment. One,
because blocking is rare, we have to build a model that can
function with a paucity of data. Two, we need to re-route
tuples before a low-capacity connection becomes overloaded.
The data transport re-routing approach does too little, too
late. It re-routes too few tuples to make a difference, and it
only does so when the connection is already overloaded. It
does not learn from its mistakes. We need an approach that
can predict how much load a connection can handle.

S. LOCAL LOAD BALANCING

In this section we describe the local load balancing prob-
lem we are solving for each parallel PE region. First we
will describe the computation of the blocking rate functions
themselves. These functions are the components of the ob-
jective function we will optimize. Then we describe the load
balancing optimization itself, including both the formulation
and the solution. Finally, we describe the way in which we
encourage periodic exploration of the problem space, in or-
der to react swiftly to dynamic changes in the underlying
scenario. Failing to do this may result in relatively static
blocking rate functions and thus to less adaptation than
should occur in the optimization.

Figure 4 sketches the steps we take to achieve local load
balancing. These steps are:

1. For each connection j, measure the cumulative block-
ing time for weight w; (which is that connection’s cur-
rent share of the load), as recorded by the transport
layer that manages the TCP connection. These mea-
surements happen at periodic intervals, and are more
frequent than the remaining steps.

2. For each connection j, compute the blocking rate for
w; using the measured cumulative blocking time for
connection j at weight w;.

3. For each connection j, incorporate the newly computed
blocking rate at w; into the history which records the
observed blocking rate for a given wj.

4. For each connection j, monotonize the computed
blocking rates across all values of w;. We mono-
tonize the measured computed blocking rates because
we know that higher values of w; (more load) should
result in a higher blocking rate. But, real data can
have noise, so we smooth out the function to make it
monotonic.

5. For each connection j, construct Fj(w;) from the
monotonized data. Creating Fj(w;) requires interpo-
lating data points for values of w; that connection
j does not have measurements for. For a given wyj,



F;(wj) is a prediction for the amount of blocking con-
nection j will experience if it is assigned that much
load.

6. For each connection j, optimize F;(w;) with respect to
all other connections such that we minimize the max-
imum blocking rate. We minimize the maximum be-
cause it is the maximum blocking rate that throttles
the splitter.

5.1 Blocking Rate Function

We begin this section by describing the construction of
the blocking rate function to be used as input to our load
balancing optimization. There will be one such blocking rate
function Fj per connection. The z-axis of this function will
correspond to potential round robin allocation weights® w;
allotted to the connection by the splitter, in units of 0.1%.
In other words, the x-axis for the jth blocking rate function
will consist of 1001 discrete values between 0 and 100%.
The y-axis will correspond to the blocking rate F;(w;) if the
connection is allocated weight w;.

To see that this function even makes sense we begin with
a simple experiment designed to compare reality with the
idealized example shown in Figure 2. Consider a two-
connection scenario on a pair of homogeneous processing
nodes. We experimented with dividing this load statically
in four separate distributions. The first is an unvarying split
with connection 1 getting 80% of the load and connection 2
getting the remaining 20%. In this case connection 1 was the
draft leader, and connection 2 was the draftee. Figure 5(a)
illustrates the blocking rate for connection 1 as a function
of time. Note the stability (flatness) of this function—its
behavior mimics that of Figure 2 quite closely. Figure 5(b)
illustrates the corresponding connection 1 blocking rate in
a 70%-30% unvarying split. Again the figure is quite flat,
and notice that the blocking rate at 70% is less than that at
80%. Similarly, Figures 5(c) and (d) show the blocking rate
for a 60%-40% split and a 50%-50% split, respectively. Note
the monotonicity of the blocking rates across the 4 subfig-
ures. As the allocation weight decreases from 80% to 50%
the blocking rates consistently decrease as well. Note also
the stability of each blocking rate over time, with the excep-
tion of Figure 5(d). What is happening here? The answer
is simple. In a 50%-50% split the draft leader has become
the draftee at some arbitrary point in time, and vice versa.
A similar graph for connection 2 would show that it is not
receiving blocking rate data at the end.

Our goal now becomes to construct a single function
F;(w;) per connection j. It is important to observe that data
for these functions will typically arrive infrequently. Specif-
ically, changes in draft leaders will occur far less frequently
than data collection intervals, which occur every second. At
most data collection intervals this means that there will be
only a single new data value for precisely one of the connec-
tions, and it will correspond to only one possible allocation
weight, the current weight for that connection.

This function is derived and updated in three steps. First,
new data is collected and smoothed into the existing “raw”
data. (The value (0,0) is assumed.) Second, the raw data
points are forced into non-decreasing order by a process
known as monotone regression [9]. Third, the missing data

5The name allocation weight is inspired by weighted round-robin,
where the weights are determined by our model.

A Y TS AT T
a

— 80-20

0

1

P M A e V]

t b

0

1

. , c

— 60-40

0

1

[ d

"

0 100 200 300 400 500

seconds

Figure 5: Blocking rates for fixed allocation weights.

points in the domain are computed via linear interpolation
or extrapolation.

5.2 Load Balancing Optimization

Our problem can be formulated as a so-called minimaz
separable resource allocation problem (RAP). Specifically, we
wish to minimize max;<;<n Fj;(w;) subject to the two con-
straints Z;\jzl w; =1land m; <w; < M foralll <j<N.

Note that the objective function maxi<;<n Fj(w;) corre-
sponds to the blocking rate of the weakest link among the
connections, the one whose blocking rate is largest. The
first constraint is the RAP constraint itself: All the traffic
from the splitter must be allocated. Separability here means
that each term F} is a function of a single decision variable
w;. The second constraint provides minimum and maximum
bounds for the connection allocation weights, typically in-
crementally from the current weights during each problem
instance. (If there is no lower bound for connection j, then
m; = 0. If there is no upper bound, then M; = 1.)

The optimization literature on RAPs is well estab-
lished [15]. In our particular case the problem is discrete
in the sense that we only consider solutions in which each
allocation weight is a multiple of » = 0.001, in other words
0.1%. So essentially, we can say that there are R = % = 1000
total units of resource. Our problem is also monotone non-
decreasing: We insist that Fj(w;1) < Fj(wj2) whenever
wj,1 < wj2. This monotonicity should be a logical tautol-
ogy, but as we have already stated that we force it to be
true in the (rare) cases where the empirical data does not
support it.

Minimax discrete separable RAPs with monotone non-
decreasing functions can be transposed quite naturally into
minisum discrete separable convex RAPs, and thus solved
exactly by a simple greedy algorithm generally attributed
to Fox [10]. Consider the “matrix” F whose (¢,7)th term
is Fj(r -4). Each column j is monotone non-decreasing in
i.  Assuming the minima are described in multiples of r,
we start by setting w; = mj. At each stage we compute
the column j* = j for which w; +r < M; and F;(w; + ) is
minimum. Then we set w;« = w;+r. We repeat this greedy
process until Zjvzl w; = 1 or each w; = M;. A simple
interchange argument will show that this algorithm produces
an optimal solution. With the proper data structures the
algorithm has complexity O(N + Rlog N). (The number of
actual iterations required is often much smaller than R.)

There do exist faster algorithms which also solve this
problem exactly. For example, a scheme based on bi-
nary search by Galil and Megiddo [12] has complexity
O(Nlog? R). Frederickson and Johnson [11] designed an



even faster scheme based on geometric search space reduc-
tion and a simple selection problem scheme when the search
space becomes sufficiently small. This algorithm has com-
plexity O(max(N, Nlog(R/N))). But for our problem in-
stances, the greedy Fox scheme suffices because both the
number of connections N and the maximum number of iter-
ations R are modest, and due to the incremental constraints.
Hence, we use it in our implementation.

Again, for more details on RAPs see [15]. RAPs occur
naturally and frequently in many diverse areas of computer
science. Typical examples can be found in [§].

5.3 Clustering

The prior local load balancing scheme works well in prac-
tice when the number of parallel connections is modest. (In
our experiments, a modest number of connections is 16 or
less.) However, as explained in Section 4, we effectively have
a fixed amount of available data to collect. As we increase
the number of connections, this fixed amount of data gets
spread out more and more. Consequently, as we increase the
number of connections, the amount of data available to each
individual connection’s function decreases. FEach function
then becomes less accurate, and the load balancing solution
provided by the optimization process suffers.

We can address this problem by starting with a systems
insight: multiple PEs may reside on the same host. If that
host experiences external load, or inherently has less process-
ing capacity than other hosts, the impact will be the same
on all of its PEs. Hence, performance is likely to be corre-
lated per host. We take advantage of this insight by using
clustering to discover groups with similar performance, and
aggregating their data into a single function for the group.

Figure 6 sketches the additional steps taken to apply clus-
tering to our local load balancing technique. We expand step
4 into substeps:

4.1 For all connections j and k, compare the weights at
which they first experience blocking (wj;,s and wg,s);
compare the amount of expected blocking at those
weights (Fj(wj,s) and Fi(wk,s)); and compare the
amount of expected blocking with a large amount of
the load (Fj(wj,r) and Fi(wk,r))-

4.2 Form clusters of connections based on these compar-
isons.

4.3 For each cluster ¢, create a new function Fj;(w;) which
averages the functions of all of the connections inside
cluster 1.

To perform clustering on the connection functions, we
must first define a distance function to measure how
“close” two functions are. That is, we require a function
Distance(F}, Fy,) which will yield 0 when F; and F}, are in-
distinguishable, and some large positive value when they are
“far apart.”

In order to define our distance function, we exploit the
characteristics of the predictive functions. Figure 7 shows
three examples. The left function in Figure 7 represents
a connection which does not see any blocking until it has
about 0.5 of the total load, at which point it experiences
low blocking. The middle function also does not experience
any blocking until it has about 0.5 of the load, at which point
it experiences moderate blocking. The function on the right
experiences severe blocking even with 0.001 of the load.

4.2

il

for all connections jand k,
compare wi; to Wg; Fi(w;s) to Fi(wis);
and Fi(w;z) to F{wig)

Lm

create average functions for each cluster

D istance

cluster based on max of
those values

Figure 6: Clustering substeps.

1

Figure 7: Sample predictive functions, F.

These functions tend to have a sharp knee at a particular
weight w; s, which is effectively the service rate for connec-
tion j. For ¢ < wj s, Fj(4) is 0. That is, until the load on
connection j is equal to its service rate, it experiences no
blocking. The amount of blocking connection j experiences
for i >= wj s is proportional to how much load it can handle.

We define our distance function with these properties in
mind. In particular, for two given connections j and k,
we want to compare their service rates (wj;s and wgs),
the amount of blocking they observe at those service rates
(Fj(wj,s) and Fg(wg,s)), and finally, their expected block-
ing with a high fraction of the total load (F;(wjr) and
Fy(wg,r)):

Distance(Fy, Fi,) =
Fj(wj,r)

maX( Fi.(wg,r) )

We compare the logarithms of the ratios of these values
to penalize large differences far more than small differences.
We use the max of these values, rather than their sum or
product, to avoid the information loss inherent in aggrega-
tion. The scaling factor, a, ensures that all of the values
are on the same scale. We define it as o = \IISSI};&\ where R
is the maximum discrete value that w; can be, and ¢ is the
value we introduce when we need to force monotonicity.

With Distance, we can define a distance between any two
functions F; and Fj. Using these distances, we perform
agglomerative clustering [2] to discover clusters among the
connections. After forming the clusters, we create a new
function for the cluster which incorporates all data from the
individual connections in the cluster. We then solve the
optimization problem presented in the previous section with
these new, clustered functions.

Clustering is effective because it reduces the dimensions of
the problem. Rather than solving, say, a 64-way optimiza-
tion problem, we may end up solving a 3-way optimization
problem. The clustered functions will also tend to be more
robust, because they incorporate more data than is available
to just a single connection.

Fj(wj,s)
10 758
& Fr(wg,s)

,aflog

log Wj,s
w

k,s

5.4 Encouraging Exploration

We have noted that distributed streaming systems are in-
herently dynamic. Although we have focussed on a single
parallel region and its corresponding hosts, exogenous load
will arrive, depart and change frequently. Streaming sys-



tems can also be bursty. On the other hand, we have also
seen that new (and thus up-to-date) load balancing data ar-
rives rather infrequently: At any given moment in time, data
is potentially being collected only at the current allocation
weights w; for the various connections. In fact, because of
drafting, it is only typically being collected at one of these
connections in a given data collection interval. This paucity
of new data is problematic in a dynamic environment, pre-
cisely because it encourages static optimization decisions.
Handling dynamic behavior implies that we must encourage
exploration rather than hinder it.

We deal with this issue in a simple but effective manner.
Encouraging exploration means that some allocation weights
must rise and some must fall. So our intuition is to “flat-
ten” the blocking rate function for all weights beyond the
current allocation weight of each connection. Specifically, if
w; represents the current allocation weight for connection j,
we reduce the blocking rate Fj(w;) for each w; > w; by a
fixed amount (chosen to be 10%) during each iteration of the
algorithm. Reducing such values geometrically in this fash-
ion, together with the enforced monotone regression scheme,
causes the blocking rate to become essentially flat beyond w;
over time. Given this scenario, the optimization scheme will
automatically start the exploration process quickly, causing
fresh data collection.

6. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our load balancing
scheme, we present two kinds of experiments. The first set
show the in-depth behavior of a single run. The second set
show total execution time and final throughput for many
runs as we vary the number of PEs, with some PEs experi-
encing simulated load.

Our in-depth experiments show one graph per connection.
Observing how the system adapts in the presence and ab-
sence of external load shows how our model is able to over-
come the challenges presented in Section 4. The z-axis is
the number of seconds into the experiment. The left y-axis
is the allocation weight, which is the percentage of tuples
that connection is receiving at that moment in time. The
right y-axis is the blocking rate for that connection.

Observing a single run is not enough to demonstrate that
our model works, or is better than the alternatives in a va-
riety of conditions. To that end, we present experimental
results which compare the total execution time and final
throughput of runs where half the PEs are experiencing sim-
ulated external load. These graphs have four different alter-
natives: Oracle* is the best distribution for the configura-
tion, determined offline and by-hand; L B-static is our model
without the decay mechanism which encourages exploration;
LB-adaptive is our model with the decay mechanism to en-
courage exploration; and RR is naive round-robin with no
dynamic load balancing. The purpose of Oracle* is to pro-
vide a best case for the performance. However, we name
it Oracle* because in the dynamic case, it will change the
allocation weights earlier than is optimal. Making it a true
oracle would require coordinating the workload generator
with the workers, to know exactly when to change the dis-
tribution. The purpose of RR is to show what would happen
without any load balancing. All execution times are normal-
ized to Oracle*, and all final throughputs are in millions of
tuples processed per second.

Unless otherwise mentioned, all of our experiments were

run on machines with 2 Intel Xeon X5365 processors at 3.0
GHz. These processors have 4 cores, yielding 8 cores per ma-
chine. Each machine has 15 GB of RAM, and they are con-
nected with InfiniBand. In our experiments, we distribute
PEs across nodes so that we have one PE per core. The
splitter and merger reside on different machines than the
parallel workers. Hence, when we use 16 PEs, we are using
two machines for the 16 parallel workers, and a third for the
splitter and merger.

6.1 3 PEs with load imbalance

Our first in-depth experiment, top of Figure 8, has a par-
allel region with 3 worker PEs processing tuples with a base
cost of 1,000 integer multiplies per tuple. In the beginning,
one PE has a simulated external load causing it to take 100x
longer to process tuples. An eighth through the experiment,
we remove the simulated external load.

The heavily loaded connection is Connection I in the top
of Figure 8. It starts out with its even share of the allocation
weight, and as a result, it experiences a high blocking rate.
To compensate, our model decides to change its allocation
weight to 0. However, we observe that as a result, the other
connections experience a sharp increase in their blocking
rate. The loaded connection then tries an allocation weight
of 9, which still results in a high blocking rate. It finally tries
an allocation weight of 3, and goes back and forth a few times
between 2 and 3. It still experiences some blocking at these
weights, but giving some allocation to the loaded connection
still yields less total blocking in the whole system.

At around 100 seconds, the data decay forces re-
exploration: Connection 1 tries an allocation weight more
than 3, but it still sees a severely high blocking rate, and
backs off. At the next re-exploration around 175 seconds,
Connection 1 does not see increased blocking because at this
point in the experiment, we have removed the 100x load.
That connection then starts a slow climb back up to an even
tuple distribution—slow because its function still indicates
that blocking is probable at higher allocation weights, and
the new data is slowly changing that function to indicate
otherwise. The spikes around 275, 375 and 475 seconds are
further re-explorations, but at this point, all of the connec-
tions have the same capacity, causing no significant changes.

This experiment demonstrates three important behaviors.
First, our model is able to quickly detect and adapt to se-
vere load imbalance. Just 15 seconds into the experiment,
we settle on a sustainable load distribution. Second, if re-
exploration shows that the system has not changed, our
scheme recovers. Finally, if re-exploration shows that the
system has changed, our scheme adapts.

6.2 3 PEs with no load imbalance

Our second in-depth experiment, bottom of Figure 8, uses
3 parallel PEs which process tuples with a base cost of 10,000
integer multiplies, and no external load. The purpose of this
experiment is to observe the behavior of our scheme when
all connections have equal capacity, but a high blocking rate
is unavoidable.

In the beginning, Connection 3 in the bottom of Figure 8
is the draft leader; it experiences most of the blocking even
though all of the connections have equal capacity. As a
consequence, its allocation weight drops to 0. Connection 2
observes some blocking, and its allocation weight drops to 8.
Connection 1 experiences very little blocking, and picks up
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Figure 10: Base tuple cost of 10,000 integer multip

over 90% of the total allocation weight. For the remainder
of the first 100 seconds, Connection 1 and 2 remain rela-
tively even while Connection 3 recovers from dropping to an
allocation weight of 0.

At 100 seconds, Connection 2 and & are induced to ex-
plore higher allocations weights, taking weight from the
draft leader, Connection 1. However, the resulting distribu-

lies and half of the PEs are 100X as expensive.

tion results in too much blocking, and Connection 1 starts
taking allocation from the other two connections until they
stabilize at an even split. Note that after 150 seconds, which
connection is the draft leader changes several times. (For ex-
ample, from 200-250 seconds, the draft leader is again Con-
nection 1.) But, at this point, all of the connections have
explored enough of the allocation weight space to build es-



sentially the same functions. Thus, even in the presence of
drafting, our model is able to detect equal capacity.

6.3 Varying PEs with medium-cost tuples

The experiment on the left in Figure 9 uses a variable
number of PEs where the base cost of a tuple is 1,000 in-
teger multiplies. Half of the PEs in each experiment have
a simulated load which causes them to take 10x as long to
process tuples. The load remains unchanged (it is static)
throughout the run.

With 2-16 PEs, our load balancing scheme is 1.5-4x better
than basic round-robin. Since the load is kept at a constant
during the experiment, the load balancing does not need to
be adaptive. However, the marginal difference between LB-
static and LB-adaptive demonstrates that with medium-cost
tuples, there is only a marginal cost to being adaptive.

The experiments on the middle and right in Figure 9 are
the same as the previously discussed experiment, with one
difference: an eighth through the experiment, we remove the
simulated load from half the PEs. The middle graph in Fig-
ure 9 shows the normalized execution time; the right graph
shows the absolute final throughput. Dynamically removing
the load an eighth through the experiment demonstrates the
importance of adaptation. It also means that total execu-
tion time does not tell the whole story, since it includes the
period of time when the load was present. Hence, we include
the final throughput, which is well after the load has been
removed. This throughput is indicative of the performance
the configuration would achieve if it ran longer—which is
important for streaming systems that are designed to run
continuously.

Perhaps surprisingly, LB-adaptive outperforms Oracle*.
This result is caused by the fact that while we know the
best distribution to use when there is load and when there
is no load, in order to get an optimal run, we have to time
the change-over exactly. The technique we use for Oracle*
changes distributions too quickly. Again, that is the reason
we do not call it Oracle.

At 2 and 4 PEs, the benefit of adaption is apparent in
both the total execution time and the final throughput. At 8
PEs, however, we have reached the point where the workload
stops scaling; for a base cost of 1,000 integer multiplies per
tuple, 8 PEs is the point at which additional parallelism
does not improve performance. This point is reached in the
dynamic experiments because once the load is removed, all
PEs can operate at full capacity. The Oracle* schedule for
16 PEs with 10x load only uses 8 of the PEs.

6.4 Varying PEs with heavy-cost tuples

The experiments in Figure 10 use a base tuple cost of
10,000 integer multiplies, using a 100x load on half of the
PEs. The graph on the left of Figure 10 represents a static
experiment, where the 100X load remains unchanged for the
entire experiment. The load balanced approaches take about
1.3-1.8 longer than Oracle*. However, basic round-robin,
which naively sends an even amount of tuples to all worker
PEs, takes 45x as long to complete as Oracle*. Dynamic
load balancing is clearly needed in this case.

As the number of PEs increases, the gap between LB-
static and LB-adaptive grows from marginal to about 30%.
This gap is the cost of being adaptive.

The benefit of being adaptive can be seen in the middle
and right graphs of Figure 10. Both graphs represent an ex-
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Figure 11: Experiments with “fast” and “slow” hosts using a tuple
cost of 20,000 integer multiplies. Top: in-depth with 2 PEs; one
on “fast”, one on “slow.” Bottom: varying the number of PEs.

periment where the 100X load is removed an eighth through.
The middle graph is the total execution time normalized to
Oracle*, and the graph on the right is the final throughput
in millions of tuples per second. During the first eighth of
the experiment, both LB-static and LB-adaptive build se-
vere blocking rate functions for the PEs with 100x the load.
However, because LB-static is never induced to re-explore,
it also never discovers that the load has been removed. LB-
adaptive does discover that the load has been removed, and
as a result, its final throughput is almost twice that of LB-
static. In the dynamic experiments, the final throughput
for RR is always roughly that of Oracle* and LB-adaptive.
However, note that RR took at least 10x as long to reach
this throughput.

6.5 PEs on heterogeneous hosts

So far, all of our experiments have run on the same kind
of host machines with simulated load. Our next set of ex-
periments uses hosts with different capabilities, and no sim-
ulated load. Thus, these experiments will require dynamic
load balancing solely because of the inherent capacities of
the systems. Our “slow” hosts are those used in all prior ex-
periments. Our “fast” hosts are machines with 2 Intel Xeon
X5687 processors at 3.6 GHz and 62 GB of RAM. The pro-
cessors on the fast hosts have 4 cores, and 2 SMT threads per
core, which means that the fast hosts support 16 threads.

The top of Figure 11 shows an in-depth experiment with
two PEs, where Connection 1 is to the fast host, and Con-
nection 2 goes to the slow host. The initial behavior is the
same to the other in-depth experiments, in that there are
some brief oscillations as the two connections explore the
allocation weight space and the model builds its functions.
The oscillations stabilize by 30 seconds into the experiment,
where they settle on about a 65%-35% split, with small vari-
ations because of the exploration mechanism. And again,
once the connections have explored enough of the allocation
weight space, the model is robust to changes in who is the
draf leader.

In the bottom of Figure 11, we vary the number of PEs
distributed across the heterogeneous hosts. There are four
alternatives: All-Fast distributes all of the PEs to the fast
node, using basic round-robin; All-Slow distributes all of the
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Figure 12: Experiment with 64 PEs and a base tuple cost of 60,000 integer multiplies; 20 PEs are 100X as expensive; 20 PEs are 5x as
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on the right is the heatmap for how connections were clustered. Matching colors are in the same cluster; one row represents one time
step, so the z-axis is connection number and the y-axis is time, with ¢t = 0 at the top.

PEs to the slow node, using basic round-robin; Fven-RR
distributes half of the PEs to the slow node, half to the fast
node, using basic round-robin; and Fven-LB distributes half
of the PEs to the slow node, half to the fast node, using our
load balancing scheme. All execution times are normalized
to Even-RR and all throughputs are in millions of tuples
processed per second.

Up to 8 PEs, All-Slow and Even-RR perform similarly,
which is expected: overall performance will be gated by
the slowest PE because of the merge. All-Fast outperforms
Even-LB because even good load balancing cannot make up
for the fact that half of its PEs are executing on slower hosts.

The slow host can only execute 8 PEs simultaneously; any
more and the slow host becomes an oversubscribed system.
Hence, performance degrades with All-Slow with 16 and 24
PEs. The fast host, however, can execute 16 PEs simultane-
ously, since each core is a two-way SMT and our workload
is integer multiplications. Because the fast host can handle
16 threads, its throughput increases when going from 8 to
16 PEs, but it does not improve with 24 PEs.

The fastest overall throughput is when 16 PEs are on the
fast host, 8 PEs are on the slow host, and we use dynamic
load balancing. Up until this point, Fven-LB was at a dis-
advantage compared to All-Fast because half of its PEs were
on the slow host. But the final configuration with 24 total
PEs shows how adding a slow host to the system can improve
performance if we use load balancing that can dynamically
detect capacity.

6.6 Clustering

Our prior results did not include clustering, as explained
in Section 5.3, as it only becomes necessary as the number of
connections scales to 32 and higher PEs. The experiments in
Figure 13 use a base tuple cost of 60,000 integer multiplies,
and half of the PEs start with 100x the load, but that load
was removed an eighth through the experiment. At 16 PEs
and below, the experiments in Figure 13 behave similarly to
the experiments in Figure 10. At 32 and 64 PEs, however,
the total execution time for LB-static and LB-adaptive are
similar, yet are both still close to 9x better than RR. The
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Figure 13: With clustering on, base tuple cost of 60,000 integer
multiplies and half of the PEs are 100X expensive.

trend in final throughput, however, remains. Because LB-
adaptive learns that the 100x initial load was removed, it
is able to use more of the total number of PEs to achieve
higher final throughput than LB-static.

However, total execution times and final throughputs only
tell part of the story. In order to understand the dynamics
of clustering and load balancing across 64 connections, we
present the experiments in Figure 12. This experiment uses
64 PEs with a base tuple cost of 60,000 integer multiplies per
tuple. This time, however, there are three classes of load:
20 PEs are at 100x the base cost, 20 PEs are at 5x the base
cost, and the remaining 24 PEs just use the base cost. The
graph on the left shows the allocation weight per connection



over the course of the experiment. We can see that the
PEs with 100x the load quickly learn they cannot handle
much load. However, it takes longer for the unloaded PEs
and the PEs with 5x the load to figure out which connection
belongs where. Note that the last “switch” happens at about
220 seconds, where some connections from unloaded clusters
realize they should be clustered with the 5x connections,
and vice-versa. In the end, however, they all sort out where
they should be.

The right graph in Figure 12 is the clustering heatmap for
the experiment. Each row, starting at the top with ¢t = 0,
represents a clustering across all connections. Time into the
experiment progresses downward from the top. The verti-
cal slice of each row represents one of the 64 connections.
Looking at a single row shows the clustering decision for a
single timestep, and looking at a vertical column shows all
clustering decisions over the lifetime of the experiment for a
single connection.

In this experiment, we expect three classes of clusters to
emerge, but this does not necessarily mean we will only see
three clusters. All connections from, say, the 5x group do
not need to all be in the same cluster. However, it is im-
perative that clusters emerge which have only connections
from the 5x group, and the same for the other performance
groups. If this is not the case, then connections will either
have too much or too little work.

We can see this behavior in the heatmap in Figure 12;
even though more than three clusters emerge, there are only
three classes of clusters in the end. Comparing the heatmap
with the allocation weight graph, we can also see that the
100x clusters end up with a minimum allocation weight;
the 5x clusters end up with an allocation weight no greater
than 2; and the unloaded clusters end up with an allocation
weight around 4.

7. RELATED WORK

The literature on load balancing in computer science is
vast. It has been studied for topics as diverse as clustered
web farms [27], cloud [24], grid [18], disk accesses in video-
on-demand systems [28], and disks in general [7]. The con-
straints of a distributed, streaming system make our prob-
lem unique: there is an ordered merge and no global infor-
mation.

Other distributed streaming systems do not perform dy-
namic load balancing for their data parallel regions in a
manner similar to our scheme. The Millwheel stream pro-
cessing system [3] partitions the work by key. A replicated
centeralized coordinator monitors the state of the workers;
if a worker experiences CPU or memory pressure, it splits
the key range handled by the worker into two smaller ranges
each with their own worker. Millwheel does not need to per-
form merges as at any given time, there is only one worker
for a given key. Sonora [30] works a similar way, with a
coordinator that uses CPU load to detect that a worker is
overloaded, and then splits that workers key range among
two workers. Like Millwheel, there is no merge. S4 [22] does
not yet support dynamic load balancing, though support
for dynamic load adjustment is planned via integration with
Apache Helix. The work of Nasir et al. [20] explores load bal-
ancing techniques in Storm, but it focused on the problem of
data skew. Spark Streaming implements streaming through
micro-batches of data, and uses delay-scheduling [31] to de-
termine when and where to launch individual micro-batches

based on data locality. Our scheme focuses on stateless
streaming operations, where data locality is not a consid-
eration, with strict ordering constraints.

Gordon et al. [13] present a compiler for Streamlt that
produces a program with a good speedup on a multicore
processor. By relying on the synchronous dataflow model,
their techniques can take into account instruction-level infor-
mation to target their application to the processor. In con-
trast, our streaming system is distributed and asynchronous:
we have no knowledge of the processing requirements of the
PEs; we do not know the processing capabilities of the hosts;
and we do not know whether the hosts chosen for the PEs
are shared.

The flexible filters work by Collins and Carloni [5] is a
load-balancing scheme for working within a single multipro-
cessor. They create alternates for filters that can be bot-
tlenecks. A splitter checks to see whether the destination
filter’s queue is full, and if so, sends the next data token to
a designated alternate. By clever placement of alternates,
they can achieve high throughput. Our approach is in the
same spirit, but a direct application to the distributed sce-
nario would be similar to the failed re-routing approach we
describe in Section 4.4. In a distributed environment, by
the time a queue is full, it is too late to make good load
balancing decisions.

Xia et al. [29] devise a distributed algorithm for dealing
with distributed resource management in a streaming sys-
tem. Their scheme considers load balancing constraints to
a degree, though their level of control is based on admission
control and coarse-grained data routing. Their paper is the-
oretical in nature, not implemented on an actual streaming
system.

Backpressure routing [25, 21] is a wireless networking tech-
nique that has some similarities to our approach. Like our
approach, backpressure is key in reasoning about the sys-
tem dynamics of a directected graph of messages, servers
and queues. Unlike our approach, messages may need to
hop nodes in the graph, and queue lengths are explicitly
known. The goal is to minimize overall queue length in the
entire graph. In our scheme, we reason about the existence
of queues, but we do not know queue lengths. Instead, we
infer queue lengths from the blocking rate, and try to mini-
mize blocking as a proxy for minimizing queue lengths.

8. CONCLUSIONS

We presented a load balancing scheme based on a novel
metric, the blocking rate of the underlying data transport
layer. We use this metric to construct functions per connec-
tion, and minimize the maximum value of those functions to
arrive at a balanced load. Our model was implemented and
tested in a real distributed streaming system.

Thus far we have concentrated on the local version of our
cluster load balancing problem. That is, we have considered
a single parallel region of one application, assuming that the
parallel PEs have already been assigned to hosts. We have
certainly seen that our scheme provides leverage for load
balancing these specific hosts. But what about the cluster as
a whole? How do we encourage this leverage across as many
hosts as possible? Our future work will consider cluster-wide
load balancing by assigning the parallel PE workers to many
nodes. With many parallel regions, there will be flexibility
in the whole system to adapt to changes.
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