
Dynamic	Load	Balancing	for	
Ordered	Data-Parallel	Regions	in	
Distributed	Streaming	Systems

Scott	Schneider,	Joel	Wolf,	Kirsten	Hildrum,	Rohit Khandekar and	Kun-Lung	Wu

presented	by

Scott	Schneider
IBM	Research

scott.a.s@us.ibm.com

Assumptions	&	Problem	Statement
• Ordered	parallel	regions	in	streaming	applications

• Assuming	Fi are	stateless	operators,	we	want	to:
• Balance	the	load	across	all	Fi in	the	presence	of	external	
load
• Without	using	global	knowledge—only local	knowledge	at	
the	splitter
• Without	imposing	significant	performance	cost

F1

E
F2

FN

GSrc SinkDA

B

C
F...

1

Blocking	Time

• Calculate	blocking	time by	performing	non-blocking	sends	at	transport	
level:

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_BLOCK:

time = block_until_available(c)
waited += time

• nonblocking_send(c, data) → sendto system	call	on	a	TCP	socket	with	flags	
set	to	"don't	wait"

• block_until_available(c) → select system	call	on	TCP	socket,	recording	
how	long	it	waited

2

Bad	Idea	1:	Data	Transport	Rerouting

• The	idea:	we're	electing to	block—why	not	send	it	elsewhere?

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_BLOCK:

for i in range(max_channels):
ret = nonblocking_send(i, data)
if ret == SENT:

break

if ret != SENT:
block_until_available(c)

3

Rerouting	Results
• Medium tuple	cost
• 200,000	tuples/s	blind-blocking
• 200,000	tuples/s	rerouting;	0.4%	of	tuples	get	rerouted

• Heavy tuple	cost
• 26,000	tuples/s	blind-blocking
• 38,000	tuples/s	rerouting;	7.5%	of	tuples	get	rerouted

• Clearly	doesn't	work,	but	why?
• Too	little:	not	enough	tuples	get	rerouted
• Too	late:	only	acting	when	system	is	overloaded

4

Bad	Idea	2:	Congestion	Index	Balancing

• The	idea:	calculate	a	congestion	index	and	redistribute	allocation	
weight	across	channels	so	as	to	balance	congestion	indices

5

CI	Balancing	Results

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

co
ng

es
tio

n i
nd

ex

we
igh

t

of rebalances

Congestion Index and Weights over time

ci
weight

Clearly	doesn't	work,	but	why?
• Reacts	only	to	instantaneous	information—no	history
• CI	"clips"	important	information

6

Blocking	Rate

0.5s

1.0s
1.5s

2.0s

2.5s

seconds	into	experiment

the	change in	the	cumulative	
blocking	time	over	time
=	ΔB	/	Δt

cu
m
ul
at
iv
e	
bl
oc
ki
ng

	ti
m
e	
(B
)

• Calculate	blocking	rate by	comparing	blocking	times	over	fixed	
periods:

7

Blocking	Rate	is	a	Good	Indicator	of	Load

100 200 300 400 500
seconds

0

1

50-50
d

0

1

60-40
c

0

1

70-30
b

0

1

80-20
a

8

Challenges

• In-order	merges

• Per-connection	throughput

• Drafting

• Blocking	is	rare

F1

Split F2

F3

Merge

9

Main	Insight
• The	first	derivative	of	the	blocking	time	when	a	
connection	is	at	a	particular	allocation	weight	is	a	
constant
• More	formally,	dBwi /	dt =	Pwiwhere	wi is	the	weight	
allocation	for	channel	i
• How	can	we	use	this?
• Pwi is	roughly	the	probability	of	channel	i blocking	at	w
• Explore	values	of	wi to	observe	various	Pwi's
• Build	a	function	for	each	connection,	where	
Fi(wi)	=	probability	of	blocking	for	connection	i
• Minimize	max	{F1(w1),	F2(w2),	…,	FN(wN)}

10

Local	Load	Balancing

for	each	connection	j,	
measure	cumulative
blocking	time at	wj

1

for	each	connection	j,
compute	blocking
rate at	wj

2

for	each	connection	j,
incorporate	new	blocking
rate	at	wj into	history

w

3

for	each	connection	j,
create	Fj(wj)	from
monotonized data

w

5

optimize	across	all	Fj(wj)
w w w

6

for	each	connection	j,
monotonize the	raw	data

w

4

11

Plus	Clustering

cluster	based	on	max	of	
those	values

Distance

create	average	functions	for	each	cluster

w

for	all	connections	j and	k,
compare	wj,s to	wk,s;	Fj(wj,s)	to	Fk(wk,s);
and	Fj(wj,R)	to	Fk(wk,R)

w w w

4.1 4.2 4.3

12

Experimental	Setup

• Synthetic	workloads,	pumping	tuples	as	fast	as	data-parallel	regions	
can	handle	them
• Simulated	load	on	some	of	the	workers
• Tuples	have	a	simulated	“cost”	to	simulate	actual	work	done
• All	workers	are	separate	processes	on	a	different	host	from	splitter,	
communicating	over	TCP

13

3	PEs	With	Load	Imbalance

0 100 200 300 400 500
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 0
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 100 200 300 400 500
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 100 200 300 400 500
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 2
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

14

3	PEs	With	No	Load	Imbalance

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 0
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 2
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

15

Aggregate	Results	With	Clustering

2 4 8 16 32 64
TRtaO nuPEer Rf 3(s

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

)
Ln

a
O
th

rR
u

g
h

p
u

t
(P

LOO
LR

n
s

R
f

tu
p

Oe
s

/
s)

60k-100x-dynamic

2raFOe*

/B-statLF

/B-adaptLve

55

2 4 8 16 32 64
TRtaO nuPEer Rf 3Es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1
R
rP

a
OLz

e
d

 e
x
e
cu

tL
R
n

 t
LP

e

11.3 11.5 11.6 11.6 11.8 8.9
60k-100x-dynamic

2racOe*

LB-statLc

LB-adaptLve

55

16

Clustering	Detail	With	Three	Groups

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

0 50 100 150 200 250 300 350
seconds

0

1

2

3

4

5

6

7

8

a
llo

ca
ti

o
n

 w
e
ig

h
t

All allocation weights (64)

17

PEs	on	Heterogeneous	Hosts

2 4 8 16 24
TRtal nuPEer Rf P(s

0.0

0.2

0.4

0.6

0.8

1.0

)
Ln

a
l
th

rR
u

g
h

S
u

t
(P

Lll
LR

n
s

R
f

tu
S

le
s

/
s)

twospeed-base20000

All-)ast

All-6lRw

(ven-RR

(ven-/B

2 4 8 16 24
TRtal nuPEer Rf 3Es

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1
R
rP

a
lLz

e
d

 e
x
e
Fu

tL
R
n

 t
LP

e

twospeed-base20000

All-Fast

All-6lRw

Even-55

Even-LB

0 50 100 150 200 250 300 350 400
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 0
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

0 50 100 150 200 250 300 350 400
seconds

0

20

40

60

80

100

a
llo

ca
ti

o
n

 w
e
ig

h
t

Connection 1
allocation weight

0.0

0.5

1.0

b
lo

ck
in

g
 r

a
te

∆B / ∆t

18

Questions?

19

Backup

20

Separable	Minimax	RAPs

• Separable	minimax resource	allocation	problems	(RAPs)	with	non-
decreasing	functions	can	be	naturally	transformed	into	separable	
convex	RAPs
• And	then	solved	via	one	of	three	algorithms	of	increasing	speed	but	
also	increasing	complexity
• Fox:	greedy,	very	simple
• Galil Megiddo:	logarithmic,	faster
• Frederickson	Johnson:	geometric/selection	problem,	fastest,	complicated

• Our	problem	is	small	→ use	Fox
• Min	and	max	constraints	okay

21

Clustering	Distance	Function

distance(Fj,	Fk)	=	max(|	log(wj,s /	wk,s)	|,
𝛼 |	log(Fj(wj,s)	/	Fk(wk,s)	|,
𝛼 |	log(Fj(wj,R) /	Fk(wk,R)	|)

• wj,s is	the	service	rate for	connection	j;	it’s	the	point	where	blocking	
becomes	non-zero
• Fj(wj,s)	is	the	blocking	connection	j	observes	at	that	service	rate
• Fj(wj,R)	is	the	blocking	rate	connection	j	observes	with	a	high	amount	
of	load

22

