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Assumptions	&	Problem	Statement
• Ordered	parallel	regions	in	streaming	applications

• Assuming	Fi are	stateless	operators,	we	want	to:
• Balance	the	load	across	all	Fi in	the	presence	of	external	
load
• Without	using	global	knowledge—only local	knowledge	at	
the	splitter
• Without	imposing	significant	performance	cost
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Blocking	Time

• Calculate	blocking	time by	performing	non-blocking	sends	at	transport	
level:

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_BLOCK:

time = block_until_available(c)
waited += time

• nonblocking_send(c, data) → sendto system	call	on	a	TCP	socket	with	flags	
set	to	"don't	wait"

• block_until_available(c) → select system	call	on	TCP	socket,	recording	
how	long	it	waited
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Bad	Idea	1:	Data	Transport	Rerouting

• The	idea:	we're	electing to	block—why	not	send	it	elsewhere?

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_BLOCK:

for i in range(max_channels):
ret = nonblocking_send(i, data)
if ret == SENT:

break

if ret != SENT:
block_until_available(c)
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Rerouting	Results
• Medium tuple	cost
• 200,000	tuples/s	blind-blocking
• 200,000	tuples/s	rerouting;	0.4%	of	tuples	get	rerouted

• Heavy tuple	cost
• 26,000	tuples/s	blind-blocking
• 38,000	tuples/s	rerouting;	7.5%	of	tuples	get	rerouted

• Clearly	doesn't	work,	but	why?
• Too	little:	not	enough	tuples	get	rerouted
• Too	late:	only	acting	when	system	is	overloaded
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Bad	Idea	2:	Congestion	Index	Balancing

• The	idea:	calculate	a	congestion	index	and	redistribute	allocation	
weight	across	channels	so	as	to	balance	congestion	indices
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CI	Balancing	Results
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Clearly	doesn't	work,	but	why?
• Reacts	only	to	instantaneous	information—no	history
• CI	"clips"	important	information
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Blocking	Rate
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• Calculate	blocking	rate by	comparing	blocking	times	over	fixed	
periods:
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Blocking	Rate	is	a	Good	Indicator	of	Load
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Challenges

• In-order	merges

• Per-connection	throughput

• Drafting

• Blocking	is	rare
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Main	Insight
• The	first	derivative	of	the	blocking	time	when	a	
connection	is	at	a	particular	allocation	weight	is	a	
constant
• More	formally,	dBwi /	dt =	Pwiwhere	wi is	the	weight	
allocation	for	channel	i
• How	can	we	use	this?
• Pwi is	roughly	the	probability	of	channel	i blocking	at	w
• Explore	values	of	wi to	observe	various	Pwi's
• Build	a	function	for	each	connection,	where	
Fi(wi)	=	probability	of	blocking	for	connection	i
• Minimize	max	{F1(w1),	F2(w2),	…,	FN(wN)}
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Local	Load	Balancing

for	each	connection	j,	
measure	cumulative
blocking	time at	wj
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Plus	Clustering

cluster	based	on	max	of	
those	values

Distance

create	average	functions	for	each	cluster

w

for	all	connections	j and	k,
compare	wj,s to	wk,s;	Fj(wj,s)	to	Fk(wk,s);
and	Fj(wj,R)	to	Fk(wk,R)

w w w
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Experimental	Setup

• Synthetic	workloads,	pumping	tuples	as	fast	as	data-parallel	regions	
can	handle	them
• Simulated	load	on	some	of	the	workers
• Tuples	have	a	simulated	“cost”	to	simulate	actual	work	done
• All	workers	are	separate	processes	on	a	different	host	from	splitter,	
communicating	over	TCP
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3	PEs	With	Load	Imbalance
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3	PEs	With	No	Load	Imbalance
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Aggregate	Results	With	Clustering
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Clustering	Detail	With	Three	Groups
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PEs	on	Heterogeneous	Hosts
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Questions?

19



Backup
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Separable	Minimax	RAPs

• Separable	minimax resource	allocation	problems	(RAPs)	with	non-
decreasing	functions	can	be	naturally	transformed	into	separable	
convex	RAPs
• And	then	solved	via	one	of	three	algorithms	of	increasing	speed	but	
also	increasing	complexity
• Fox:	greedy,	very	simple
• Galil Megiddo:	logarithmic,	faster
• Frederickson	Johnson:	geometric/selection	problem,	fastest,	complicated

• Our	problem	is	small	→ use	Fox
• Min	and	max	constraints	okay
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Clustering	Distance	Function

distance(Fj,	Fk)	=	max(|	log(wj,s /	wk,s)	|,
𝛼 |	log(Fj(wj,s )	/	Fk(wk,s)	|,
𝛼 |	log(Fj(wj,R) /	Fk(wk,R)	|)

• wj,s is	the	service	rate for	connection	j;	it’s	the	point	where	blocking	
becomes	non-zero
• Fj(wj,s)	is	the	blocking	connection	j	observes	at	that	service	rate
• Fj(wj,R)	is	the	blocking	rate	connection	j	observes	with	a	high	amount	
of	load
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