Dynamic Load Balancing for
Ordered Data-Parallel Regions in
Distributed Streaming Systems

Scott Schneider, Joel Wolf, Kirsten Hildrum, Rohit Khandekar and Kun-Lung Wu

presented by
Scott Schneider
IBM Research

scott.a.s@us.ibm.com

Assumptions & Problem Statement

* Ordered parallel regions in streaming applications

* Assuming F; are stateless operators, we want to:

* Balance the load across all F; in the presence of external
load

* Without using global knowledge—only local knowledge at
the splitter

* Without imposing significant performance cost

Blocking Time

. ICalclulate blocking time by performing non-blocking sends at transport
evel:

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD BLOCK:
time = block_until_available(c)
walted += time

- nonblocking_send(c, data) > sendto system call on a TCP socket with flags
set to "don't wait"

« block_until_available(c) - select system call on TCP socket, recording
how long it waited

Bad ldea 1: Data Transport Rerouting

* The idea: we're electing to block—why not send it elsewhere?

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_ BLOCK:
for i in range(max_channels):
ret = nonblocking_send(i, data)
if ret == SENT:
break

if ret !'= SENT:
block _until_available(c)

Rerouting Results

* Medium tuple cost
» 200,000 tuples/s blind-blocking
e 200,000 tuples/s rerouting; 0.4% of tuples get rerouted

* Heavy tuple cost
e 26,000 tuples/s blind-blocking
38,000 tuples/s rerouting; 7.5% of tuples get rerouted

* Clearly doesn't work, but why?
 Too little: not enough tuples get rerouted
* Too late: only acting when system is overloaded

Bad Idea 2: Congestion Index Balancing

* The idea: calculate a congestion index and redistribute allocation
weight across channels so as to balance congestion indices

|(’.I..[|| = |11

S

ongestion Index and Weights over time

Cl Balancing Resu

T x] U . ' L lxTE] 4 1]
v\l l i l l l ! il . | li \ ~‘ li : .
so F LT ! + AT t11 F] Lkt]] i
| ¥ | \ ‘
g G0 by DpdUur DU D yenudnl yu L gUETT
 «of] by =I] Cea gl N AIEIT -
é | P -+ " » l ; 4 I v “ %
g 2o]| LT | | J 1
20 I %] I ﬁ! T+ 1 I T T T
10 | 4 ‘S: I“ 4 . 1 4 j T M I T 1 0
i - | !! -] | i T i
Weiéﬁj -:I:, ’ |+ I |Tj
© 6] 50 1 E)O I1 éO o 206 I 550 300 S é50 406 450) "'500

of rebalances

Clearly doesn't work, but why?
* Reacts only to instantaneous information—no history
 Cl"clips" important information

Blocking Rate

 Calculate blocking rate by comparing blocking times over fixed
periods:

A 2.5s

the change in the cumulative
blocking time over time
= AB / At

cumulative blocking time (B)

seconds into experiment

Blocking Rate is a Good Indicator of Load

AT Y Ty AT W Py VT

i | a

| — 80-20

O |

1

MM‘-“ A ‘m

i b

| — 70-30

O |

1

:'_.‘_;A W U, U SR | ~‘“"“"fC

" — 60-40

O |

1

i | | d
— 50-50 o -

=22 r

100 200 300 400 500
seconds

Challenges

* In-order merges E

* Per-connection throughput

* Drafting % Vs o
)

* Blocking is rare

Main Insight

* The first derivative of the blocking time when a
connection is at a particular allocation weight is a
constant

* More formally, dBW,-/ dt = P, where w; is the weight
allocation for channel i

* How can we use this?
. PW,, is roughly the probability of channel i blocking at w
* Explore values of w; to observe various P, 's

e Build a function for each connection, where
F(w,) = probability of blocking for connection i

* Minimize max {F,(w,), F,(w,), ..., F\(wy)}

Local Load Balancing

1

for each connectionj,
measure cumulative
blocking time at w;

4

for each connectionj,
monotonize the raw data

2

for each connection j,
compute blocking
rate at w,

for each connectionj,
create F(w;) from
monotonized data

1 T T 1
w

for each connectionj,
incorporate new blocking
rate at w; into history

6

optimize across all F(w))

11

Plus Clustering

4.1
A A
|| o®®
>‘<—|> .
‘? I I I IWI I I

for all connections j and k,

—»“_

w

compare w; ; to w, ;; F,(w;) to F(w,);

and Fj(wj’R) to Fk(wk,R)

those values

4.2 4.3
A) ’ m A
(Y J
l o
. 00 000 . ®
Distance IWI o
cluster based on max of create average functions for each cluster

12

Experimental Setup

* Synthetic workloads, pumping tuples as fast as data-parallel regions
can handle them

e Simulated load on some of the workers
* Tuples have a simulated “cost” to simulate actual work done

* All workers are separate processes on a different host from splitter,
communicating over TCP

allocation weight

3 PEs With Load Imbalance

100 | annection 0 | 1.0 10 | annection 2 | 1.0 10 | annection 1 | 1.0
m| = allocafion weight| ' | - allocation weight| ' | - allocation weight| '
80 80| 80l
< <
g o g o g
60| e 2 60|L e 2 60 e
(@) c (@) c (@)
0.5¢ o 10.5 ¢ o 0.5¢
RV e RV e RV
40 S g 40 8 T 40 E
o) o e i) o
| (_U r'_U
20[Ll 20r ML 20 N
% 100 200 300 400 500° % 100 200 300 400 500° % 100 200 300 400 500°
seconds seconds seconds

14

allocation weight

10

3 PEs With No Load Imbalance

| Conne‘ction 0‘

— allocation weig ht|

80}
60}
40/

20r

|

W

ﬁ

— AB/At

]

1.0

o
U

50

100

150
seconds

200

250

3000

blocking rate

allocation weight

| Conne‘ction 1‘

10 ‘ ‘ 1.0
|— allocation wei ht|
[N

80!
60|
1 10.5
20
% 50 100 150 200 250 3000
seconds

blocking rate

allocation weight

‘Conne‘ction 2‘

10 ‘ ‘ 1.0
| = allocation we'ght|
[y
80| Mﬂ\
60|
| 105
40 !
20
% 50 100 150 200 250 3000

seconds

15

blocking rate

Aggregate Results With Clustering

60k-100x-dynamic

6.0 11,3 1i/5 1i/6 116 1i.8 8|
Q
-§5.0
(e
o
454-0 B Oracle*
33 d Bl | B-static |
% ' I [B-adaptive
2.0t RR
©
£
01.0
P

o
o

2 4

8

16

32
Total number of PEs

64

60k-100x-dynamic

ut (millions of tuples / s)

Y
©
© K
= Ul

4|l Oracle*
|l LB-static
Il LB-adaptive

[1 RR

©
© N
N U

o
o

Final through
o
o o
u

2 4 8

16

32
Total number of PEs

64

16

i)
I7II
AR LT
HNEEE BN
_I_I__IIIIII-
ol
i Ll
i =i
1
1
I
|]]|
| |

1ybiam uonedojje

) !
= ulll i ______
G __ fEER III
-I I III
_________. .__
S SrNmsmneroag NN SRR N NI ANRRRAN AR AR RATYIISSTIRANRINEERREE
o
n
h "
0 ==——— -0
L 1S
< ’
o
S <[1<
® =mm—— 6
N
%] €
Aa b= | Nd f
-t ol | |3
(0] u-zs
Q = E
c (®)
O 2 g [ls@
ol 10
“ —— — - - —
Q0 =]
_ = | 5 —— |
n Py d_ —h o
-] i
—
0 mm———
S —
. T
€D, ‘] 12
—— — N
—
) =
:r\ - |
| | | | | ,HH‘, 0
w o) ~ © n < ™ ~ — o
L]

PEs on Heterogeneous Hosts

Qonne;ﬂoqo Qonnepﬁon}

100 — 1.0 10 R — 1.0
h alloca eight‘ AN — AB/At ’ for— tion WN\N
I [— 2874t]
80| 80
< <
=) T e ———— ————— 8 > .8
s 60 C s 60| c
5 052 S lo52
— AV] Y4
T 40| E S 40 s
o Q k) T Q
® ®
20 20
% 50 100 150 200 250 300 350 40%° % 50 100 150 200 250 300 350 4007
seconds seconds

twospeed-base20000 twospeed-base20000

3.5 mmm All-Fast 1.0l | mmm All-Fast
3.0l|=2 All-Slow B 1 All-Slow

Hl Even-RR 0.8/|/IH Even-RR
2.5 |mmm Even-LB EEE Even-LB

=
on

=
=]

Normalized execution time
N
o

o o
o

Ul

Final throughput (millions of tuples / s)

4 8 16 24

8 16 24
Total number of PEs Total number of PEs

Questions?

Backup

Separable Minimax RAPs

» Separable minimax resource allocation problems (RAPs) with non-
decreasing functions can be naturally transformed into separable
convex RAPs

* And then solved via one of three algorithms of increasing speed but
also increasing complexity

* Fox: greedy, very simple

* Galil Megiddo: logarithmic, faster

* Frederickson Johnson: geometric/selection problem, fastest, complicated
* Our problem is small = use Fox

* Min and max constraints okay

Clustering Distance Function

distance(F;, F,) = max(| log(w;, / w,) |,
a | log(Fi(wj) / Flwyg) |,
a | log(Fi(w;g)/ Fi(wg) |)

* W, is the service rate for connection j; it’s the point where blocking
becomes non-zero

. Fj(wj,s) is the blocking connection j observes at that service rate

* F(w;r) is the blocking rate connection j observes with a high amount
of load

