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Assumptions & Problem Statement

* Ordered parallel regions in streaming applications

* Assuming F; are stateless operators, we want to:

* Balance the load across all F; in the presence of external
load

* Without using global knowledge—only local knowledge at
the splitter

* Without imposing significant performance cost



Blocking Time

. ICalclulate blocking time by performing non-blocking sends at transport
evel:

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD BLOCK:
time = block_until_available(c)
walted += time

- nonblocking_send(c, data) > sendto system call on a TCP socket with flags
set to "don't wait"

« block_until_available(c) - select system call on TCP socket, recording
how long it waited



Bad ldea 1: Data Transport Rerouting

* The idea: we're electing to block—why not send it elsewhere?

while ret != SENT:
ret = nonblocking_send(c, data)
if ret == WOULD_ BLOCK:
for i in range(max_channels):
ret = nonblocking_send(i, data)
if ret == SENT:
break

if ret !'= SENT:
block _until_available(c)



Rerouting Results

* Medium tuple cost
» 200,000 tuples/s blind-blocking
e 200,000 tuples/s rerouting; 0.4% of tuples get rerouted

* Heavy tuple cost
e 26,000 tuples/s blind-blocking
38,000 tuples/s rerouting; 7.5% of tuples get rerouted

* Clearly doesn't work, but why?
 Too little: not enough tuples get rerouted
* Too late: only acting when system is overloaded



Bad Idea 2: Congestion Index Balancing

* The idea: calculate a congestion index and redistribute allocation
weight across channels so as to balance congestion indices
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Clearly doesn't work, but why?
* Reacts only to instantaneous information—no history
 Cl"clips" important information



Blocking Rate

 Calculate blocking rate by comparing blocking times over fixed
periods:

A 2.5s

the change in the cumulative
blocking time over time
= AB / At

cumulative blocking time (B)

seconds into experiment



Blocking Rate is a Good Indicator of Load
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Challenges

* In-order merges E

* Per-connection throughput

* Drafting % Vs o
)

* Blocking is rare




Main Insight

* The first derivative of the blocking time when a
connection is at a particular allocation weight is a
constant

* More formally, dBW,-/ dt = P, where w; is the weight
allocation for channel i

* How can we use this?
. PW,, is roughly the probability of channel i blocking at w
* Explore values of w; to observe various P, 's

e Build a function for each connection, where
F(w,) = probability of blocking for connection i

* Minimize max {F,(w,), F,(w,), ..., F\(wy)}



Local Load Balancing

1

for each connectionj,
measure cumulative
blocking time at w;

4

for each connectionj,
monotonize the raw data

2

for each connection j,
compute blocking
rate at w,

for each connectionj,
create F(w;) from
monotonized data

1 T T 1
w

for each connectionj,
incorporate new blocking
rate at w; into history

6

optimize across all F(w))
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Plus Clustering
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Experimental Setup

* Synthetic workloads, pumping tuples as fast as data-parallel regions
can handle them

e Simulated load on some of the workers
* Tuples have a simulated “cost” to simulate actual work done

* All workers are separate processes on a different host from splitter,
communicating over TCP



allocation weight
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allocation weight

10

3 PEs With No Load Imbalance
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Aggregate Results With Clustering
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PEs on Heterogeneous Hosts
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Questions?



Backup



Separable Minimax RAPs

» Separable minimax resource allocation problems (RAPs) with non-
decreasing functions can be naturally transformed into separable
convex RAPs

* And then solved via one of three algorithms of increasing speed but
also increasing complexity

* Fox: greedy, very simple

* Galil Megiddo: logarithmic, faster

* Frederickson Johnson: geometric/selection problem, fastest, complicated
* Our problem is small = use Fox

* Min and max constraints okay



Clustering Distance Function

distance(F;, F,) = max(| log(w;, / w,) |,
a | log(Fi(wj) / Flwyg) |,
a | log(Fi(w;g)/ Fi(wg) |)

* W, is the service rate for connection j; it’s the point where blocking
becomes non-zero

. Fj(wj,s) is the blocking connection j observes at that service rate

* F(w;r) is the blocking rate connection j observes with a high amount
of load



