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Abstract
Streaming applications exhibit abundant opportunities for
pipeline parallelism, data parallelism and task parallelism.
Prior work in IBM Streams introduced an elastic threading
model that sought the best performance by automatically
tuning the number of threads. In this paper, we introduce the
ability to automatically discover where that threading model
is profitable. However this introduces a new challenge: we
have separate performance elastic mechanisms that are de-
signed with different objectives, leading to potential negative
interactions and unintended performance degradation. We
present our experiences in overcoming these challenges by
showing how to coordinate separate but interfering elastic-
ity mechanisms to maxmize performance gains with stable
and fast parallelism exploitation. We first describe an elastic
performance mechanism that automatically adapts different
threading models to different regions of an application. We
then show a coherent ecosystem for coordinating this thread-
ing model elasticty with thread count elasticity. This system
is an online, stable multi-level elastic coordination scheme
that adapts different regions of a streaming application to
different threading models and number of threads. We imple-
mented this multi-level coordination scheme in IBM Streams
and demonstrated that it (a) scales to over a hundred threads;
(b) can improve performance by an order of magnitude on
two different processor architectures when an application
can benefit from multiple threading models; and (c) achieves
performance comparable to hand-optimized applications but
with much fewer threads.
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1 Introduction
Online stream processing has emerged to meet the demands
of processing large amounts of data with low latency and
high throughput. The languages and frameworks for stream
processing are parallel and distributed, and use a dataflow
programming model to abstract the development for parallel
and distributed systems [21, 5, 1, 18, 2]. However, despite
these abstractions, tuning the performance of application
deployments is still an intensive task for developers and ad-
ministrators. Further, streaming application deployments are
increasingly moving to the cloud. In an environment where
the physical hardware that the streaming application runs on
is unknown or can potentially change across deployments,
intensive performance tuning becomes increasingly difficult.
In the context of performance optimization, stream pro-

cessing applications have a property that can be exploited:
they tend to be long-running. Because of the nature of the
problems they solve—processing large amounts of continu-
ally arriving data—a typical application deployment is live for
weeks or months. Long-running applications are amenable
to online, automatic performance-based adaptation because
adaptation phases are easily amortized. Such application
adaptations can help solve the difficulties of optimizing the
performance of complicated parallel and distributed applica-
tions deployed to unknown hardware.

IBM Streams [12, 13] is a parallel and distributed streaming
platform used in production in dozens of companies in indus-
tries including aviation, medicine, transportation, telecom-
munication and banking. The programming language for
IBM Streams is SPL [11, 19], which is a dataflow language
with primary abstractions for streams, operators and tuples:
operators receive and emit tuples on streams of data.
IBM Streams 4.2 introduced a dynamic threading model

with thread count elasticity to the SPL runtime [20]. By dy-
namically adjusting the number of threads at runtime, thread
count elasticity allowed the SPL runtime to automatically
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Figure 1. Black lines are the throughput of a chain of 100 operators with varying percentage of operators using the dynamic threading
model. Blue lines are the throughput achieved by the proposed framework, which reaches good performance with automatic threading
model adjustment and thread count adjustment. The x-axis of varing percentage of operators only applies to the black lines.

scale and take advantage of multicore systems. However, it
achieved this scalability through a heavy-handedmechanism:
it introduced scheduler queues in front of every operator. As
a result, threads can freely execute any operator by pulling
tuples from the corresponding queue. The use of schedulers
queues incurs two major overheads: copy overhead due to
the fact that tuples in SPL are statically allocated and synchro-
nization overhead when tuples are passed to downstream
operators. As the operator count scales, an increasing list of
scheduler queues means that each thread has to spend longer
time in finding work. Programmers can manually annotate
regions that should be executed by a single thread to avoid
such overheads, but that removes the benefit of automation.
In Figure 1, we show the throughput of a 100 operator

pipeline while varying the percentage of operators executed
under the dynamic threading model, i.e. operators with a
scheduler queue in front of them. Operators not under the
dynamic threading model are executed by the threads from
upstream operators. The workload of each operator is 100
FLOPs per tuple. We vary the tuple payload from 1B to 1KB
and the available resource from 16 cores to 88 cores. All
throughputs are measured after thread elasticity has settled
on the best number of threads for that configuration. The
takeaway from Figure 1 is that the best throughput is not
achieved when all operators are executed under the dynamic
threading model, and that the optimal configuration varies.
Tuple copying and thread synchronization costs dictate that
some sections of the application should be single-threaded.
The existing thread count elasticity solves a single dimen-
sional problem, but these experiments illustrate that there is
an additional dimension—threading model elasticity.
The addition of threading model elasticity means that

the streaming runtime has two separate but interfering per-
formance elastic components making online adjustments.
These performance control algorithms run at separate inter-
vals, modify different components of the runtime, and do
not explicitly refer to each other. But they are interfering
because the modifications made by one component affects

the decisions made by the other. This paper presents an auto-
matic solution that coordinates the adjustment of the thread-
ing model of individual operators with the existing thread
count performance adapatation component. Our coordinat-
ing methodology finds a scheduling solution for multiple
performance elastic components that improves performance
with SASO guarantees [10], which means it provides sta-
bility (no oscillation between adjustments), achieves good
accuracy (find the threading model and thread count that
maximizes throughput), has short settling time (reaches a
stable configuration quickly), and avoids overshoot (does not
use more threads than necessary).

The specific contributions of this paper are:

1. A multi-level performance elastic framework in produc-
tion use to coordinate the threading model choice at
operator level in tandem with the adjustment of thread
count.

2. A control algorithm that uses runtime metrics and local
control to achieve SASO properties in order to quickly
adapt to varying workload with performance guarantee.

3. Empirical evaluation of the proposed framework on two
processor architectures using benchmarks and applica-
tions that demonstrates scalability to over a hundred
threads, better resource utilization, and more than 10×
throughput gains in some cases.

2 Background
The three primary abstractions in SPL, the language for pro-
gramming in IBM Streams, are operators, tuples and streams.
Operators are the primary actors: they are event-based and
execute when they receive tuples on their input ports. Tu-
ples are structured data items with strongly-typed attributes.
There are no restrictions on the kind of logic that executes
inside an operator, except that it can only natively access
state local to the operator. Operators can produce tuples,
which are submitted to their output ports. The input and
output ports of operators are connected by streams.



Automating Multi-level Performance Elastic Components for IBM StreamsMiddleware ’19, December 8–13, 2019, Davis, CA, USA

1 composite WikiWordCount {
2 graph
3 stream<rstring page> WikiPages = HTTPGetStream() {
4 param url: "https://stream.wikimedia.org/v2/stream/recentchange";
5 }
6 @parallel(width=5)
7 stream<rstring word> Words = Custom(WikiPages) {
8 logic onTuple WikiPage: {
9 list<rstring> words = tokenize(WikiPages.page, " ", false);

10 for (rstring w in words) {
11 submit({word=w}, Words);
12 }
13 }
14 }
15 @parallel(width=10, partitionBy=[{port=Words, attributes=[word]}])
16 stream<rstring word, int32 count> Counts = Aggregate(Words) {
17 window Words: sliding, time(60), time(1), partitioned;
18 param partitionBy: word;
19 output Counts: word=Any(), count=Count();
20 }
21 () as Published = WebSocketSend(Counts) { param port: 8082; }
22 }

Figure 2. Streams Processing Language (SPL) example.

At job submission, operators are divided among PEs (pro-
cessing elements). PEs with connected operators communi-
cate over the network. Inside of a PE, connected operators
communicate either through function calls or queues. PEs are
how Streams takes advantage of multiple hosts, and threads
inside of a PE are how Streams takes advantage of multicore
hosts. This paper is only concerned with the execution inside
of a single PE, although all PEs in a job independently use
the proposed work to maximize their performance.
Figure 2 is an example SPL composite operator that

retrieves the latest changes to Wikipedia and publishes
histograms of the word counts to a websocket. The
HTTPGetStream operator from the streamsx.inet toolkit [14]
continually retrieves the latest changes from Wikipedia.
These changes are streamed to an operator with custom logic
that tokenizes the page, and submits a new tuple for each
word. As each page is independent, we use the @parallel

annotation to use 5 data-parallel copies for this task. An
Aggregate operator counts how many instances of a word
it sees in every 60 second window, updating every second.
Finally, it publishes the results through WebSocketSend, also
from the streamsx.inet toolkit, viewable by any service that
connects to that port.
While this example is a toy compared to production ap-

plications, it demonstrates several key properties common
in real applications: a variety of tuple types and sizes; many
opportunities for data and pipeline parallelism; and a variety
in the computational cost of operators.

2.1 Threading models and elasticity
Streams 4.2 introduced threading models and thread count
elasticity to the SPL runtime, which enabled PEs to launch
multiple threads to execute operators. Themanual threading
model uses the threads already introduced by the program-
mers or operators. It is so-called because programmers must
manually introduce threads between operators at compile-
time to add more parallelism. The dynamic threading model

injects scheduler queues between each operator, and the SPL
runtimemaintains a set of scheduler threads that can execute
any operator. A thread count elasticity algorithm monitors
total throughput across all operators and dynamically change
the number of threads to maximize that throughput [20].
This paper is concerned with two types of threads in

Streams. Operator threads drive the execution of source op-
erators. Scheduler threads are used by the dynamic thread-
ing model. Scheduler threads obtain tuples from scheduler
queues associated with the input ports of an operator and
execute the operator. When any thread (scheduler or op-
erator thread) encounters a scheduler queue, it pushes its
current tuple into that queue and continues executing from
its source operator. Scheduler threads are not bound to a
specific input port or operator. They incur synchronization
overhead—as any scheduler thread can execute any operator
using the dynamic threading model—but they are adaptable
and enable more parallelism.
This paper presents a solution that, in threading model

terms, automatically partitions the application into dynamic
and manual threading model regions.

3 Design and Implementation
We first present our new elastic algorithm to adjust the
threading model when the thread count is fixed, and then
extend it to adjust both the threading model and thread
count coherently. This algorithm uses the operator cost met-
ric, which is computed during runtime with low overhead.
The operator cost metric is an indicator of the relative

computation workload of operators. To compute it, we regis-
ter a runtime level per-thread state variable for each thread
in the system, which is set to the corresponding operator
index when threads enter the processing logic of that opera-
tor. A profiler thread wakes up every profiling period to take
a snapshot of the state of all the actively running threads.
It maintains counters for each operator and increments the
counter by the number of times that operator appears in the
snapshot. This counter directly correlates with the relative
operator cost and is reported as the operator cost metric.

3.1 Threading model elasticity
Threading model elasticity aims to automatically select the
threading model, dynamic or manual, for each operator in
order to improve performance. Given N operators, the explo-
ration space contains 2N configurations, and thus exhaustive
search is not a scalable solution. The following two observa-
tions allow us to reduce the search space to linear:
(O1) If the cost metric of an operator is relatively high, there
are higher chances for it to benefit from the use of the dy-
namic threading model, i.e. it is more likely that additional
parallelism amortizes scheduling and queuing overheads.
(O2) If there is performance improvement when an operator
uses the dynamic threading model, we can expect similar
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performance gain if other operators that have similar cost
metrics are executed with the dynamic threading model.
Our algorithm begins with all operators under the man-

ual threading model, i.e. there are no scheduler queues. Per
(O1), the control algorithm prioritizes to select the dynamic
threading model for computationally heavy operators, and
terminates the exploration when turning more operators
to use the dynamic threading model no longer improves
performance. Per (O2), we perform logarithmic binning by
dividing operators into profiling groups. Rather than testing
the threading model choice with each individual operator,
we now set the granularity of adjustment at the level of
this group of operators. We start from the group with the
highest relative cost, say Gh . If there is performance im-
provement with the use of the dynamic threading model
for every operator in Gh , we move on examine the group
with the next-highest relative cost among the remaining
groups (Gh−1). If there is performance degradation due to
the change in threading model choice for Gh , we further
break down that group and study if performance improve-
ment can be achieved with part of the group choosing the
dynamic threading model (described next). Both (O1) and
(O2) help to satisfy the settling time property of SASO.

Within a group, the elastic control algorithm performs a
binary search to select the right set of operators that should
use the dynamic threading model, guided by the perfor-
mance trend learnt through exploration. Broadly speaking,
the threading model elasticity algorithm tests new configu-
rations in the direction that has the possibility of providing
higher performance based on the data we have collected so
far. For example, if we have data from fewer operators choos-
ing dynamic threading model and we have not explored
using more operators, and the data suggest that throughput
increases with the operator count, the logical thing to do is
to select the dynamic threading model for more operators.

Figure 3 and Figure 4 show the step-by-step view and algo-
rithm of the threading model elastic component. In Figure 4,
currCount refers to the number of operators choosing dy-
namic threading in the latest adjustment and binSize refers
to the number of operators in the current group. The fol-
lowing rules are used to elastically partition operators into
different threading model regions:
(R1) When there is an increasing performance trend com-
pared to fewer operators using the dynamic threading model
and we have not explored with more operators, add more op-
erators in the dynamic threading model region (Figure 3(a)),
line 8 in Figure 4).
(R2) If there is an increasing performance trend when opera-
tor count increases, increase the operator count (Figure 3(b)),
line 8 in Figure 4).
(R3) When there is a decreasing performance trend com-
pared to fewer operators using the dynamic threading model,
decrease the operator count (Figure 3(c)), line 10 in Figure 4).

(a) Rule 1 (b) Rule 2 (c) Rule 3

Throughput Throughput Throughput

(d) Rule 4 (e) Rule 5

Throughput Throughput

#operatormanual 
threading

dynamic 
threading current placement

Figure 3. Steps to explore threading model choice; the blue line in-
dicates the measured performance trends; the red triangle indicates
the current number of operators that uses dynamic threading; the
dotted arrow indicates the action for next step: whether to increase
or decrease the number of operators for dynamic threading.

1 enum AdjustDecision{CONTINUE, STAY, CHANGE};
2
3 AdjustDecision threadingModelAdjustement() {
4 if (currCount == binSize - 1 && perfIncWithMore()) {
5 //continue the threading model adjustment with the next group
6 currGroup = nextGroup; threadingModelAdjustement();
7 } else if (perfIncWithMore()){
8 increaseCount(); return CONTINUE;
9 } else if (perfDecWithMore()){
10 decreaseCount(); return CONTINUE;
11 } else {
12 if (currCount == 0) return STAY;
13 else return CHANGE;
14 }
15 }

Figure 4. Elasticity algorithm for threading model elastic compo-
nent.

(R4) When there is a decreasing performance trend with
more operators and we have not explored with fewer op-
erators, decrease the operator count (Figure 3(d), line 10 in
Figure 4).
(R5) When there is an increasing performance trend com-
pared to both fewer and more operators using the dynamic
threading model, stop the search (Figure 3(e), line 12 or
line 6 (when performance improvement of dynamic thread-
ing model applies to every operator in the current group, we
move on to the adjustsment of next group) in Figure 4).

The current performance trend is composed by only two
performance data points: the last adjustment and the cur-
rent adjustment. Hence it is hard to tell where the optimal
configuration may lie just through the performance trend.
We explore the optimal configuration of threading model
through adaptive adjustment. For example, in Figure 3(a),
the optimal configuration may either lie on the left side of
the current adjustment – indicating a performance increas-
ing performance trend followed by decreasing performance
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trend and the current adjustment actually falls on the down-
ward trend, or it may lie on the right side of the current
adjustment – indicating the current adjustment falls on the
upward trend. However, as we proceed for the scenario in
Figure 3(a), we will either end up with the case in Figure 3(a)
again, which confirms that the optimal configuration lies
on the right side of the current placement, or end up with
Figure 3(c), which indicates that the optimal configuration
lies on left side in Figure 3(a). Similar observations can be
made about the scenario of Figure 3(d). As we make progress
in this search, we limit the scope of the possible optimal con-
figuration. Eventually, when the difference in operator count
between two consecutive adjustments is short enough for us
to establish the relationship in (R5), we stop the exploration.
Note that (R1) and (R2) satisfy the accuracy property of

SASO by adding operators to the dynamic threading model
region for potential performance gains if we observe an
upward performance trend. (R3) and (R4) also provide the
accuracy property in SASO by exploring in the reverse di-
rection if a downward trend exists. All the rules from (R1) to
(R5) satisfy the stability property in SASO: we do not oscil-
late between adjustments since observations from the past
are remembered and represented as performance trends.

3.1.1 Discussion on implementation details
In our implementation, a dedicated adaptation thread is used
to monitor the throughput changes periodically. The period
between observation and adjustment should be long enough
to have the change reflected in throughput and short enough
to detect workload change. We use a period of 5 seconds and
find that it works well for Streams applications. We have
also experimented with the periods of 10s, 20s and 30s and
have not observed significant performance impact due to the
different period values within this range.
The observed performance change should be significant

enough to differentiate from system noise. Hence, we intro-
duce a sensitivity threshold, SENS. A smaller SENS value favors
detecting changes while a larger SENS value favors stability.
We choose the value of 0.05 in our implementation, meaning
that we must observe at least a 5% performance difference
before establishing a performance trend.
Exploring threading model changes within a profiling

group presents a choice: given that N operators need to use
the dynamic threading model, which N should it be? In our
implementation, we choose an arbitrary set of N fromwithin
the group. It turns out such randomness not only provides
the settling time property in SASO, but also incurs negligible
disturbance to the system: reasonable good performance is
achieved compared to manual tuning as shown in Figure 1
and little run-to-run variance as shown in Section 4. Limiting
the scope of threading model adjustment within a group of
operator does help reduce variance, since operators within a
group have a similar cost metric.

3.2 Multi-level elasticity
So far, we have presented the design of the threading model
performance elastic component. When integrating this fea-
ture to IBM Streams 4.3, the challenge was how to coordi-
nate the threadingmodel elastic component with the existing
thread count elastic component [20]. If not careful, the poten-
tial incompatibilities between the adatptive components can
lead to unstable poorly-tuned performance feedback loop.
Our solution effectively and quickly explored the configura-
tion space through an iterative refinement process by fixing
one elastic component at a time while making adjustment for
the other until no performance improvement can be gained.
Primary adjustment: The first design choice was the pri-
mary elastic adjustment, for which we explored two options:
1. Change in thread count: A thread count change triggers

the search to find the locally optimal threading model
configuration for that number of threads.

2. Change in threading model: Threading model changes
trigger finding the locally optimal number of threads for
the current threading model configuration.

We tried both options and adopted the first approach in
our design for two reasons. First, we did not want to exhaust
system resources. If the thread count adjustment was sec-
ondary, we would repeatedly increase the number of threads
up to the point of performance degradation. Doing so was
required in finding the optimal number of threads. Hence,
the system would potentially be oversubscribed much more
frequently during the adaptation period. In contrast, our
choice favored the SASO property of avoiding overshoot.
Second, changes in thread count usually cause higher

variation in performance than changes in threading models.
Hence, if thread count adjustment was in the inner loop as
the secondary adjustment, the performance impact of the
outer loop threading model adjustment became less tractable,
which in turn made it harder to apply consistent corrective
adjustments to the threading model choices.
Adjustment direction: Our second design question was
what should the starting conditions be? We could start with
either:
1. The maximum number of available threads: Every oper-

ator would choose to use dynamic threading.
2. The minimum number of threads: No operator would

choose dynamic threading.
The starting conditions determine the adjustment direc-

tion; starting with full parallelism means the algorithm will
reduce it, and starting with no parallelism means the algo-
rithm will introduce it. Initially in our design we adopted
the first adjustment direction. However, when the maximum
number of threads and queues were used (since every opera-
tor is under dynamic threading), it meant that the algorithm
would reduce threads and take away queues from the least
expensive operators. This performance difference was often



Middleware ’19, December 8–13, 2019, Davis, CA, USAXiang Ni, Scott Schneider, Raju Pavuluri, Jonathan Kaus, and Kun-Lung Wu

A B

C[0]

C[1]

C[2]

D E

Scheduler 
Threads

(a) Initial State

A B

C[0]

C[1]

C[2]

D E

Free 
PortsC[1]

Scheduler 
Threads

(b) Threading Mode Elasticity

A B

C[0]

C[1]

C[2]

D E

Queue 
TableC[0] C[1] C[2]

Scheduler 
Threads

(c) Thread Count Elasticity

A B

C[0]

C[1]

C[2]

D E

Queue 
Table

Scheduler 
Threads C[0] C[1] C[2] E

(d) Threading Model Elasticity

Throughput

Time

Throughput

Time

Throughput

Time

Throughput

Time

A B

C[0]

C[1]

C[2]

D E

Queue 
Table

Scheduler 
Threads

(e) Multi-level Elasticity
Throughput

Time

A B

C[0]

C[1]

C[2]

D E

Queue 
Table

Scheduler 
Threads C[0] C[1] C[2] E

(f) Multi-level Elasticity
Throughput

Time

C[0] C[1] C[2] E D

Source 
Operator 
Thread

Queue 
TableC[0] C[1] C[2]

Figure 5. Steps involved in Multi-level elasticity.

indistinguishable from system noise, and thus the iterative
refinement terminated earlier than it should. Choosing the
second adjustment direction achieved better accuracy be-
cause it started by enabling parallelism with the most ex-
pensive operators, which provided a more reliable signal. It
also had the benefit of being more likely to avoid system
over-subscription. Both properties aligned with the SASO
goals.
Interaction between threading model and thread
count elasticity:

Figure 5 shows the multi-level elasticity in action. At the
start (Figure 5(a)), no operator uses the dynamic threading
model, hence the only source operator thread will execute
all downstream operators. Two scheduler threads exist but
remain idle since there are no scheduler queues for them to
find work from. Next, the PE explores the threading model
choices, which adds scheduler queues for operators C[0],
C[1] and C[2] (Figure 5(b)). As a result, the two scheduler
threads are no longer idle and throughput improves. Next,
if we have not reached the maximum number of threads
allowed, thread count elasticity kicks in to further increase
the thread count for better performance as shown in Fig-
ure 5(c). With more threads, another round of threading
model elasticity places one more scheduler queue to advance
the performance in Figure 5(d). At some point, further adjust-
ing the number of threads or threading configuration could
no longer improve the performance as can be seen in Fig-
ure 5(e). Hence, in Figure 5(f), the elasticity algorithm reverts
the adjustment and stabilizes until the workload changes.

3.3 Optimizations to shorten the adaptation period
Figure 6 presents sample runs of multi-level elasticity with
different sets of optimizations to demonstrate how they effect
settling time. The x-axis shows the time into the experiments
in seconds. The lefty-axis is the throughput. The righty-axis
shows the number of scheduler queues. The top x-axis is
the number of threads for that window of time. The blue

line shows the changes in the scheduler queues caused by
threading model elasticity. The dotted and solid black lines
shows the changes in throughput induced by the thread
count elasticity and threading model elasticity, respectively.
The graph used in all these experiments is a 500 operator
pipeline with varying cost of 10, 000, 100 and 1 FLOPs to
process one tuple. The tuple payload is 1024B. Note that
sometimes the converged throughput in Figure 6 appears to
be lower than the maximum throughput: this is because the
maximum throughput is observed when there is a sudden
change in the number of threading queues, which causes the
temporary peak in throughput.
Figure 6(a) uses what we have described so far. Adjust-

ments to thread count trigger threading model elasticity. Due
to these adjustments, the throughput keeps increasing and
finally stabilizes after 1000 seconds. Note that both thread
count and threading model elasticity contribute to improving
the throughput as they are iteratively triggered. In Figure 6(a),
we can also see that though threading model elasticity is trig-
gered every time the thread count changes, the threading
configuration may remain unchanged after exploration. For
example, in Figure 6(a), after the window of time with 64
threads, the scheduler queue placement changes many times,
but it eventually settles back to the level it started at. This
observation motivates our first optimization to shorten the
adaptation period: learning from history. As can be seen from
Figure 6(a), at 96 threads, adapting the threading model con-
figuration can no longer further improve the performance in
comparison to the throughput achieved at 64 threads. Hence,
the same queue placement works for both 64 and 96 threads.
With this history information, when the thread count is de-
creased from 96 to 80, we can skip adjusting the threading
model by approximating that the same configuration is best
for any thread count between 64 and 96.
Learning from history: The essence of this optimization
is to keep track of the thread range (N ,M) that works well
with the recent threading model adjustment, meaning from
thread count N to thread count M , the optimal threading
model configuration remains unchanged. Information about
the past adjustment is stored. Inside each history record of
threading model adjustment, we record the maximum and
minimum number of threads that have worked well with
this configuration.
When the thread count changes, we look into the record

of the most recent queue placement. If the new thread count
is within the thread range that has worked well with the
current placement, we skip adjusting the threading model
for now and continue to adapt the thread count. If the new
thread count is above the upper bound of the thread range,
we explore if using more scheduler queues can help improve
performance. Otherwise if the thread count is below the
lower bound of the thread range, we try to switch more
operators to use manual threading.
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Figure 6. Effect of optimizations to shorten the adaptation period.

When no further improvement can be obtained by solely
changing the threading model configuration, we switch back
to the thread count elasticity phase. If there is any change in
the threadingmodel configuration, we update the adjustment
history record to reflect it. Otherwise, we update the thread
range for the existing queue placement.
By learning from history, in Figure 6(b) we are able to

shorten the adaptation period by 20%. At around 800 seconds
in Figure 6(b), there are several narrow dotted vertical lines
which indicate that the thread count changed but queue
adjustments were skipped.
How can we further shorten the adaptation period with-

out sacrificing the performance? Another pattern can be
observed in both Figure 6(a) and Figure 6(b) is that when
the thread count increases to 16 and 32, the performance
improvement is solely brought by changing the thread count.
After exploring the threadingmodel configuration, the queue
placement remains unchanged. Hence when the thread count
change alone already improves the performance significantly,
it leaves little space for the threading model adjustment to

play. Such observations lead to the second optimization to
shorten the adaptation period: satisfaction factor.
Satisfaction factor (sf): The essence of this optimization
is that if the primary adjustment (thread count) alone can
improve the performance by a significant amount, the sec-
ondary adjustment (threading model) can be skipped unless
the thread count alters again. We use the following condition
to determine when to skip the secondary adjustment:(

currThroughput
prevThroughput

− 1
)
> sf

(
newThreadCount
prevThreadCount

− 1
)

sf indicates the relative performance gain we expect com-
pared to the increase in the thread count, and its value is
between 0 and 1. When sf is closer to 0, we favor faster adap-
tation and we skip the queue adjustment more frequently.
When sf is closer to 1, we favor better performance and
perform the threading model adjustment more frequently.

In Figures 6(c, d), we present the scenarios with the satis-
faction factor set to 0.6 and 0. In Figure 6(c), the system skips
the threading model adjustment when the thread count is
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1 void init() {
2 threadingModelElasticity = true;
3 threadCountElasticity = false;
4 }
5 void adapt() {
6 if (threadCountElasticity) {
7 threadLevel = threadCountAdjustment();
8 sf = calculateSatisfactionFactor();
9 if (sf < THRE) { //Satisfaction factor optimization

10 direction = lastAdjustment.toContinue(threadLevel)
11 if (direction != NONE) { //Learning from hitory
12 threadingModelElasticity = true;
13 threadCountElasticity = false;
14 }
15 }
16 } else if (threadingModelElasticity) {
17 decision = threadingModelAdjustement();
18 if (decision == CHANGE) createNewAdjustHistEntry(newThreadLevel);
19 if (decision == STAY) updateAdustHistEntry(newThreadLevel);
20 if (decision == CONTINUE) return;
21 threadCountElasticity = true;
22 threadingModelElasticity = false;
23 }
24 }

Figure 7. Automating multi-level performance elastic components.

8 and 16 because the thread count change alone results in
more than an 80% throughput improvement. In Figure 6(d),
with sf = 0, the threading model adjustment is also skipped
at 32 threads as sf of 0 means unless there is performance
drop with an increased thread count, we will not trigger
the threading model elasticity. Overall, with the use of the
history record and satisfaction factor, the adaptation period
is reduced from 1,000 seconds to just over 400 seconds. The
improvement in adaptation time is achieved without sac-
rificing throughput; as can be seen in Figure 6, the final
throughput after adaptation is close across different runtime
setups. Both optimizations of learning from history and the
use of satisfaction factor provide the settling time property
of SASO.
Enhanced multi-level elasticity
In Figure 7, we show the core of the scheduling algo-

rithm to automate multi-level elasticity. The iterative refine-
ment process is composed of two components: the thread-
ing model elasticity (threadingModelElasticity) to adjust the
scheduler queue placement and the thread count elastic-
ity (threadCountElasticity) to adapt the number of threads.
When the thread count changes (line 7 in Figure 7), we first
calculate the satisfaction factor. If the satisfaction factor (sf)
is less than the pre-defined threshold, we look into the record
of the most recent threading model adjustment. Otherwise
we skip adjusting the threading model. If the new thread
count is within the thread range that has worked well with
the current placement, we skip adjusting the threadingmodel
for now and continue to adapt the thread count.
If the number of threads is larger than the upper bound

of the thread range observed so far, we explore if switching
more operators to use dynamic threading can help improve
performance. Otherwise if the thread count is smaller than
the lower bound of the thread range, we try to decrease
the number of operators using dynamic threading model.
In Section 3.1, we have explained the threading model ad-
justment algorithm with the adjustment direction set to UP.

When exploring the effect of decreasing the number of oper-
ators under dynamic threading model, the same algorithm
is used in the reverse order, e.g., we start with the group of
the lowest relative cost.

When no further improvement can be obtained by solely
changing the threading model adjustment, we switch back
to the thread count elasticity phase. If there is any change in
the threading model choices for operators, we update the ad-
justment history record to reflect the change. Otherwise we
update the thread range for the existing queue placement.

4 Evaluation
We evaluate our solution to automate multiple elastic com-
ponents in terms of throughput and its ability to adapt to
application workloads and available resources. We use repre-
sentative benchmarks as well as production applications run
on two different architectures to compare multi-level elastic-
ity with the pure dynamic and manual threading models.
We measure application throughput at the sink operator.

During the initial adaptation period, the elasticity algorithms
explore the configuration space to find the best thread count
and threading model choices, resulting in drastically varying
throughput. Hence, we only compare the converged through-
put to other baselines. We present results for two different
processor architectures: 1) Xeon with maximum 176 cores,
and 2) Power8 with two 3 GHz processors, each with 12
8-way SMT cores. One core has been disabled in our Power8
system, yielding 184 logical cores.

4.1 Representative benchmark evaluation
In order to evaluate our multi-level elasticity in a wide range
of scenarios, we experiment with representative benchmarks
that contain four graph architectures that form the basic
building blocks for many Streams applications. Our bench-
marks allow us to emulate the different operator load distri-
butions and payload sizes we observe in practice.
Figure 8 shows the four graph architectures used in our

benchmarks: pipeline, data-parallel, mixed and bushy. Each
graph exposes a different amount of data and pipeline par-
allelism. We assign operators’ tuple costs using either the
balanced distribution or the skewed distribution. With the
balanced distribution, every operator performs the same
number of floating point operations per tuple. With the
skewed distribution, 10% of the operators have the tuple
cost of 10,000 FLOPs as heavy-weight operators, 30% are
medium-weight operators with 100 FLOPs per tuple while
the remaining are light-weight operators with a per tuple
cost of 1 FLOPs. We randomly place the heavy-, medium-
and light-weight operators in the graph without any prior
knowledge. We also vary the number of operators as well as
the tuple payload to span a broad range of possible scenar-
ios. For these benchmarks, the manual threading model uses
only one thread to execute all operators.
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Figure 8. Stream graph architectures used.

Pure pipeline: Figure 9 presents the results for the bench-
mark runs with pipeline graphs (Figure 8(a)) on the two
system architectures using the balanced and skewed cost
distributions. For the balanced cost distribution, each oper-
ator has a tuple cost of 100 FLOPS. We vary the number of
operators as well as tuple payload as seen on the x-axis. The
operator count ranges from 100 to 1000 while the tuple pay-
load is changed from 128B to 16384B. The left y-axis shows
the speedup in throughput compared to the throughput of
manual threading. The right y-axis shows the ratio of the
operators using dynamic threaidng model. In full dynamic
threading, this ratio is always one, i.e. every operator has
a scheduler queue placed in front of it. Red bars are the
throuhgput of manual threading model. Grey bars are the
throughput achieved by thread count elasticity (dynamic
threading). Black bars are the throughput by multi-level elas-
ticity. Shaded light gray bars represent the ratio of operators
under dynamic threading model with multi-level elasticity.
The number on top of the black bars are the throughput
speedups of our design compared to thread count elasticity
alone.

The throughput speedups shown in Figure 9 demonstrate
that the proposed multi-level elasticity scheme provides sig-
nificant improvements over using only thread count elastic-
ity (up to 22× when the payload is 16384 B). The general
trend is that as the tuple payload increases, so does the per-
formance impact of multi-level elasticity. With increasing
payload, the fraction of operators that have scheduler queues
(shown by the shaded gray bar) also decreases. This is be-
cause as the tuple payload increases, cost of using scheduler
queues increases.

Figure 9(a) shows the results of using a balanced tuple cost
distribution. When the operator count is 100 and the tuple
payload is only 128B, the throughput improvement due to
our design is negligible. This is expected since more than 80%
of the operators end up choosing dynamic threading model,
which is similar to the case of thread count elasticity alone.
When the tuple payload is increased to 16384B, using only
thread count elasticity hurts performance in comparison to
manual threading. Combined with threading model elastic-
ity, similar performance as manual threading is obtained by

Figure 9. Throughput comparison for pipeline graphs.

only allowing a small fraction of operators to use dynamic
threading model.

Another trend is that as the number of operators increases,
multi-level elasticity has a higher impact on performance.
This is because as the size of graph scales up, each individual
thread is more critical because of the higher overall system
workload. A better placement of scheduler queues not only
reduces the queuing overhead but also helps balance the
workload among the threads, improving utilization. For ex-
ample, in Figure 9(a), when the operator count is increased
to 1,000, queue elasticity helps improve the performance by
more than three times. with the tuple payload fixed to 1024B,
when the operator count is 100, the improvement brought by
the queue elasticity is not significant Correspondingly, the
ratio of operators using dynamic threading model decreases
due to the limited parallelism available in the system.

The trends summarized above show that multi-level elas-
ticity can serve as a safe default choice and can outperform
both dynamic and manual threading for pipeline graphs. The
trends apply to both processor architectures and both tuple
cost distributions. We observe only minor changes in the
trends due to the variance of the processor architecture or
tuple cost distribution.
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We also find that multi-level elasticity consistently im-
proves resource utilization by using fewer threads. In Fig-
ure 9(d), when the payload of the 100-operator graph is 128B,
though multi-level elasticity achieves similar throughput as
dynamic threading, it successfully reduces the thread usage
from 88 to 46.

Figure 10. Throughput comparison for pure data-parallel graphs.

Pure data parallel: Figure 10 shows the performance com-
parison for the data-parallel graph. We vary the data parallel
width from 50 to 100. The most notable trend is that some-
times thread count elasticity performs worse than manual
threading. This is mostly due to the structure of the stream-
ing graph. As can be seen in Figure 8(b), the Snk operator
communicates directly with all the parallel worker operators.
The implementation of the Snk operator maintains a local
variable protected by a lock to track how many tuples have
been processed for throughput calculations. Hence, as the
thread count increases, contention among threads on the Snk
operator also increases.

With the multi-level elasticity, the throughput achieved is
consistently equal or better than that of manual threading.
This is because the algorithm decides to choose dynamic
threading model for only a few number of operators, leading
to a similar configuration as manual threading. Given that
this is all done when the streaming runtime had no prior
knowledge of the graph architecture and used no user in-
put, these results show the utility of our design for finding
optimal configurations for such a graph architecture.
Mix of pipeline and data parallel: The results in Figure 11
are for graphs with a mix of data and pipeline parallelism.
The degree of data parallelism is 10 while the number of op-
erators in each data parallel path varies from 50 to 100. This
graph architecture is a close representation of many realistic
production scenarios. Despite the differences in the graph
architecture, the performance trends obtained here are simi-
lar to those obtained in the previous cases. The performance

Figure 11. Throughput comparison with mix of pipeline and
data-parallel graphs.

improvement obtained by use of multi-level elasticity in-
creases as the operator count and tuple payload increases. At
the same time, the fraction of operators under the dynamic
threading model decreases with the increase of the number
of operators and tuple payload. These results suggest that
the proposed algorithm should apply to real-world scenarios
with mixed data and pipeline parallelism, especially when
tuple payload is at least a few hundred bytes.

Figure 12. Throughput comparison with bushy graphs.

Bushy tree: Figure 12 shows the throughput comparison
for the bushy graph (Figure 8(d)). The total number of oper-
ators is fixed at 82. We vary the number of available cores
from 16 to 88 as well as the tuple cost for each operator
from 1 to 10, 000 FLOPS using the balanced cost distribu-
tion. The number on top of the shaded light gray bar are
the throughput speedups of multi-level elasticity compared
to thread count elasticity. When the tuple cost is low, the
benefits of multi-level elasticity are high. This is because
the cost of using dynamic threading is relatively higher for
smaller workloads, making threading model selection more
important. When the number of available cores changes, the
multi-level elasticity adapts to the resource variation and
still provides performance benefits.
Multi-level elasticity also uses fewer threads for better

performance. For example, when the tuple payload is 16,384B
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and tuple cost is 1 FLOPS, multi-level elasticity not only
improves the performance bymore than 50% but also reduces
the number of threads used from 4 to 2.

Figure 13. Adaptation to workload phase change.

Adaptation: We demonstrate the ability of multi-level elas-
ticity to adapt to workload change in Figure 13 using a
pipeline graph with 100 operators. The ratio of heavy-weight
operators changes from 10% to 90% after 20 minutes into
the run. After detecting the workload change, it takes multi-
level elasticity 500 seconds to find a new configuration for
better performance. Our scheme quickly adapts the thread
count from 32 to 88 and the number of operators under the
dynamic threading model from 42 to 86 in reaction to the
increased workload.

4.2 Mini-application evaluation
Next, we evaluate the performance of multi-level elastic-
ity with a small-scale application VWAP (52 operators) as
shown in Figure 14(a). The goal of VWAP is to detect bar-
gains and trading opportunities based on processing the
volume-weighted average price from bids and quotes. The
manual threading version in Figure 15(a) has no user-inserted
threads. The hand optimized version is achieved by manually
inserting threaded ports by the application developers. Both
thread count elasticity and multi-level elasticity achieve at
least two fold speedup compared to the manual threading
and hand optimized version with fewer threads. The hand
optimized version has 9 hand-inserted threads while the two
elastic schemes stabilize at only 3 threads. On four cores, the
multi-level elasticity helps improve performance further by
15% in comparison to thread count elasticity alone. The dif-
ference due to multi-level elasticity is marginal on 16, but 6%
improvement is obtained on 88 cores. This is because VWAP
has few operators, relatively low tuple payload, and light
computation workload, and thus additional benefit of thread-
ing model choice for VWAP shows up when less resources
are available such as on 4 cores.

4.3 Application evaluation
In order to stress test the multi-level elasticity support, we
evaluate its performance using a hand-optimized highly dy-
namic production application, PacketAnalysis. This applica-
tion was developed by IBM for a major telecommunications
company for general network monitoring and specific threat
analysis. It ingests packets directly from a 10 Gb/s Intel NIC
using DPDK [6], which uses techniques originally designed
for virtualization (SR-IOV) to achieve kernel bypass. After

ingesting packets, the source operators forward tuples con-
taining those packets down a variety of analysis pipelines,
including DGA detection, tunneling detection and volumet-
ric analysis. PacketAnalysis must operate as close to line-rate
as possible, since it processes live packets.
All of our PacketAnalysis experiments were run on the

176 logical core Xeon system. The test data was sent over the
network from a different system, looping over a PCAP file
with historical DNS queries from one hour on a large corpo-
rate network. We experiment with two different application
configurations: 1 source operator and 8 source operators.
Each source operator uses DPDK to read live packets. The
application with 1 source operator has 387 operators, and
the 8 source operator application (Figure 14(b)) has 2305
operators.
The manual threading version has no user-inserted

threads. The hand-optimized version uses multiple threads
that have been inserted by its developers after spending sig-
nificant performance analysis effort. As a result, the 1 source
variant has 17 hand-inserted threads, and the 8 source variant
has 129 hand-inserted threads. These hand-inserted threads
are also bound to cores in a NUMA-aware manner.
Figure 15(b) presents PacketAnalysis’s throughput with

manual, hand-optimized manual threading, thread count
elasticity, and multi-level elasticity. The executions with
thread count elasticity and multi-level elasticity used be-
tween 8 and 20 threads over the runs, and still obtained
performance close to the hand-optimized version using 129
threads. However, for both scenarios, multi-level elasticity
resulted in only a marginal performance difference. We were
surprised by this result, but it is explained by the fact that
the tuples in PacketAnalysis are relatively small (∼256 bytes)
compared to the computationally expensive analytics.

4.4 Discussion
Our benchmarks show that the presented multi-level elas-
ticity solution scales and improves performance when the
amount of computational work and tuple sizes scale. As the
tuple size increases, the performance gain increases pro-
portionally. This performance increase is coupled with less
resource usage. Our applications do not show the same dra-
matic performance improvement because for the specific
scenarios we tested, computation costs and relative tuple
sizes are modest. These results are in line with our results
for benchmarks, as even there we see modest performance
differences with tuple sizes less than 1 KB. Our application
results also show that real applications are largely composed
of pipelines of data-parallel regions. As the computation and
tuple sizes of Streams applications increase, our results indi-
cate that our multi-level elasticity algorithms should be able
to handle them and obtain high performance.

Our results also show that our control algorithmmeets the
SASO properties. Low run-to-run variance suggests that the
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Figure 14. Application topologies: a) VWAP contains 52 operators, b) PacketAnalysis consists of 2305 operators in total; blue boxes represent
100+ operators, while yellow operators with the same name represent data-parallelism.

Figure 15. Throughput comparison for VWAP and PacketAnalysis.

multi-level elasticity solution provides stability, while perfor-
mance benefits for benchmarks and performance matching
the hand-optimized version for applications indicate accu-
racy of the elasticity solution. Shortened adaptation period
and use of less resources usage demonstrate that the re-
maining two SASO properties of short settling period and
avoiding overshooting are provided.

5 Related Work
Google Dataflow [7, 2] is a distributed system for stream and
batch data processing. Based on the measured throughput,
CPU utilization, and backlog, it auto-scales the number of
workers to execute multiple instances of sub-graphs. Apache
Flink [5], an open-source distributed stream processing sys-
tem, supports manual rescaling of a streaming job, i.e., users
can change the level of parallelism after restarting their pro-
grams from a savepoint. StreamMine3G [16] is an event
stream processing system which provides both horizontal
elasticity (changing the number of nodes) and vertical elas-
ticity (changing the number of threads) for accommodating
the fluctuation in the data stream. The focus of auto-scaling
in Google Dataflow, manual rescaling in Flink, and elasticity
in StreamMine3G is data parallelism, which is different from
our work that exploits runtime elasticity to automatically
adjust both data and pipeline parallelism.

Matteis et al. [3] adoptmodel predictive control techniques
for elastic scaling to satisfy energy and latency constraints.

Gordon et al. [9] utilize compiler techniques to automati-
cally exploit data, task and pipeline parallelism in stream
programs. In contrast our work relies on a lightweight on-
line profiler and perfoms runtime adjustments to improve
parallelism and resource usage.
StreamBox [17] focuses on exploiting out-of-order pro-

cessing to maximize parallelism. It dynamically allocates
thread from a thread pool to adapt to the different workload.
Go [8] adopts the M:N threading model with a work-stealing
scheduler for task-based parallelism. Dhalion [4] uses back-
pressure and congestion to identify bottleneck in stream
processing and automatically adjusts the parallelism of each
operator. DS2 [15] estimates the optimal level of parallelism
for each operator in order to to maximize streaming system
throughput. In our work, we keep the configuration of the
parallelism of each operator constant while dynamically ad-
just the threading model and the coherent system to control
both the thread count and threading model elasticity, while
existing work only focuses on adjusting the thread count.

6 Conclusion
In this paper we describe our experience in automatically
scheduling multiple performance elastic components in IBM
Streams. Such endeavor is non-trivial, as different perfor-
mance elastic components are designed with different ob-
jectives, have distinct adjustment granularity and unique
resource requirements. We found that choosing the right
adjustment order and adjustment direction based on the
characteristic of each performance elastic components is es-
sential to good parallelism and improved resource utilization
(e.g. by more than 10× in some cases). We also found that
thread count elasticity alone, usually adopted by modern
streaming runtimes, is not enough for optimal performance.
Augmented with the threading model elasticity and the right
control mechanism to adjust multiple elastic components
coherently, we are able to obtain promising results on over
a hundred threads on Xeon and Power 8.
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