Auto-Parallelizing Stateful
Distributed Streaming Applications

Scott Schneider™, Martin Hirzel”,
Bugra Gedik* and Kun-Lung Wu’

"IBM Research *Bilkent University

Programming Model

e Streams applications

— Described as data-flow graphs
* An instance of a flow graph is a job in the system

— Flow graphs consist of
* Tuples: structured data item
* Operators: Reusable stream analytics
e Streams: Series of tuples with a given schema

Streaming Programming Models

Synchronous Asynchronous
e Static selectivity * Dynamic selectivity
— eg,1:3 — e.g,1:[0,1]
for i in range(3): if input.value > 5:
result = f(i) submit(result)
submit(result) — Ingeneral, 1:*

— In general, m : n where m and

_ * In general, schedules
n are statically known

. cannot be static
* Always has static schedule

InfoSphere Streams Runtime

SPIT
J>

Connections

x86 host x86 host x86 host x86 host x86 host

InfoSphere Streams Runtime

;

x86 host x86 host x86 host x86 host x86 host

What we do

composite Main {
type
Entry = int32 uid, rstring server,
rstring msg;
Sum = uint32 uid, int32 total;
graph
stream<Entry> Msgs = ParSource() {
param servers: "logs.x.com"; ParSrc
partitionBy: server;
Iy

stream<Sum> Sums = Aggregate(Msgs) {
window Msgs: tumbling, time(5),
partitioned;
param partitionBy: uid;

}

Filter Filter Filter Filter

stream<Sum> Suspects = Filter(Sums) {

param filter: total > 100;
}

() as Sink = FileSink(Suspects) {
param file: "suspects.csv";
}
¥

Overview

Compiler:

* Apply parallel transformations

* Pick routing mechanism (e.g., hash by key)

* Pick ordering mechanism (e.g., seq. numbers)

lStream graph description

Runtime:

* Replicate segment into channels

* Add split/merge/shuffle as needed
* Enforce ordering

Transformations & Safety Conditions

Parallelize Parallelize sources Combine parallel Rotate
non-source/sink and sinks regions merge and split
|
-® o— | —o E}D—l@ M
|
g $ 3 4 <
|
|
| o—©O
I —
| o——0
'@' g | é o o %
stateless or * stateless or e stateless * incompatible
partitioned state partitioned state or keys
selectivity <1 e compatible keys
simple chain * forwarding

* Can't parallelize
— Operators with >1 fan-in or fan-out
— Punctuation dependecy later on

 Can't add operator to parallel segment if

— Another operator in segment has co-location
constraint

— Keys don't match

10

Compiler to Runtime

Compiler

compile-time

Graph + unexpanded
parallel regions

Fully expanded
graph submission-time

Runtime Runtime Runtime
graph graph graph
fragment fragment fragment

run-time

Runtime

selectivity = 1 selectivity £ 1 selectivity unknown
no state don't parallelize
partitioned state don't parallelize
unknown state don't parallelize don't parallelize don't parallelize

Operators in parallel segments:
* Forward seqno & pulse

\ Merge:

|
Split: - — . Apply ordering

* Insert seqno & pulse @ - - policy |
* Routing P . * Remove seqno (if

there) and drop
pulse (if there)

12

Round-Robin

next

Merger Ordering

: —
0 13 101 7 :next-heap
. 1)1
T]
r i N !
1]
1 15 4
- — i last =4
1]
(.l
2 15 (12 (9 1 6 |1
- : J :
| YE——

Sequence Numbers

= {----\I
4 7 A}
0 { (221(16)(10]inext-heap
§ N N 1
R N :
(RSN
1 A 8}
N e e last = 4
 Tanias aaice
2 \ (24 ;018 (12116]
\ N/ : :
SO | Y)
seen-heap

Sequence Numbers and Pulses

Speedup compared to the sequential case

Scalability

SplitMergeStateful

100

1 ! ! ! ! ! ! ! ! ! !
20 92 gt 96 98 9l ol2 HldHl6 9l8 920 SplitShuffleMerge
Per tuple processing cost (# of multiplications)

T 16 + RRTT A = | = 2 FS——— A —————

Application Kernels

——
22]
o0 |~ Network monitoringl ... 21 ' f@_ il .
c 18 4. -.-PageRank ... TW|tter NLP

‘(__) 14 H-m-Twitter CEP [l A - Parsesz = Match 1=
.12 + Finance |72 P e eeenees - —_ -
10 _mance .. / O A Twitter CEP

Network monitoring

Finance

Questions?

Backups

Compiler Changes

Transport Changes

e TCPSender

— Added the ability to send to a subset of
connections on an output port

e Handshake

— Modified to include sender identities

e TCPReciever

— Added support for identifying which connection
has delivered a tuple

Overhead (%) over RoundRobin

Overhead

35 $eqN9 & Pglse

oo # epochs=32|
> # epochs=16
epochs=8
x—x # epochs=4
*—+ # epochs=2
epochs=1

w
N
T

+—+ # channels=1 <—< # channels=8
30|+ #channels=2 »— # channels=16
x—= # channels=4 o—o # channels=32

!

25

o]
T

Speedup compared to the sequential case

4 .
, ol
17,
T Ty T ol 56 o8 510 ol ol o6 518 520 00 02 51 96 o8 ol o2 ol o6 5i8 520
2 2
Per tuple processing cost (# of multiplications) Per tuple processing cost (# of multiplications)

20

Speedup compared to the sequential case

Scalability

| | Stqtelegs
oo #channels=32| | °©©
> # channels=16
16f| <— # channels=8

x—= # channels=4

*—+ # channels=2
channels=1

32¢

Per tuple processing cost (# of multiplications)

220

Speedup compared to the sequential case

e o # channels=32]|
—> # channels=16
16f| <— # channels=8
x—= # channels=4
*—+ # channels=2
channels=1

32¢

Per tuple processing cost (# of multiplications)

i

21

Scalability

Shuffle

e o # channels=32]|
> # channels=16 R
channels=8 | O
x—= # channels=4
*—+ # channels=2
channels=1

w
N
T

i

(o8]

N

N

Speedup compared to the sequential case
HI—'

o
Ul

Per tuple processing cost (# of multiplications)

