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Abstract
On multiprocessors with explicitly managed memory hierarchies
(EMM), software has the responsibility of moving data in and out
of fast local memories. This task can be complex and error-prone
even for expert programmers. Before we can allow compilers to
handle the complexity for us, we must identify the abstractions that
are general enough to allow us to write applications with reason-
able effort, yet specific enough to exploit the vast on-chip memory
bandwidth of EMM multi-processors. To this end, we compare two
programming models against hand-tuned codes on the STI Cell,
paying attention to programmability and performance. The first
programming model, Sequoia, abstracts the memory hierarchy as
private address spaces, each corresponding to a parallel task. The
second, Cellgen, is a new framework which provides OpenMP-like
semantics and the abstraction of a shared address spaces divided
into private and shared data. We compare three applications pro-
grammed using these models against their hand-optimized coun-
terparts in terms of abstractions, programming complexity, and per-
formance.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.3.4
[Programming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages

General Terms Design, Languages

Keywords Cell BE, Explicitly Managed Memory Hierarchies,
Programming Models

1. Introduction
Multi-core processors with explicitly managed memory hierar-
chies have recently emerged as general-purpose high-performance
computing platforms. Some of these processors, such as Cell and
GPUs [5, 21], originated in the computing domains of games and
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graphics. More recently, processor vendors for mainstream com-
puting markets such as Intel and AMD introduced similar de-
signs [24]. All of these processors have data-parallel components as
accelerators. This acceleration is achieved through several to many
scalar or SIMD cores, high on-chip bandwidth, and explicit data
transfers between fast local memories and external DRAM. Ex-
plicit data transfers enable the programmer to use optimal caching
policies and multiple streaming data buffers that allow overlap
computation with communication [6].

Managing the memory hierarchy in multi-core processors in-
troduces trade-offs in terms of performance, code complexity,
and optimization effort. Multi-core processors based on coher-
ent hardware-managed caches provide the abstraction of a sin-
gle shared address space, which is convenient for parallel pro-
gramming. However, hardware-managed caches only allow the
programmer to improve locality implicitly, through reordering of
instructions or realignment of data in main memory. In contrast
to hardware managed caches, software-managed local memories
introduce per-core, disjoint address spaces that the software is re-
sponsible for keeping coherent. Because it is the software’s re-
sponsibility to manage data, the programmer can explicitly manage
locality. The programmer can decide what and when data is placed
in local memories, what data gets replaced and what the data layout
is in local memories, which can differ from the layout of data in
off-chip DRAM [1].

In this work, we analyze and evaluate support for express-
ing parallelism and locality in programming models for multi-
processors with explicitly managed memory hierarchies. We use
the Cell processor as an experimental testbed, which we describe
in more detail in Section 2. We study three programming mod-
els motivated by and developed for the Cell processor. We explore
abstractions for specifying parallel tasks, specifying the working
sets of parallel tasks, controlling task granularity, and scheduling
data transfers to and from local memories. In particular, we com-
pare programming models where managing parallelism and local-
ity is implicit versus programming models where managing par-
allelism and locality is explicit. The exploration space of this pa-
per is summarized in Table 1. The programming models are de-
scribed in more detail along with examples in Section 3. We use
three realistic and non-trivial parallel applications for our evalua-
tion: PBPI [11], Fixedgrid [17, 23, 14] and CellStream [22], a vari-
ation of the stream benchmark to measure maximum on-chip data
transfer bandwidth on the Cell. These applications are described
further in Section 4; they stress both computational power and on-
chip/off-chip memory bandwidth.

Our experimental analysis, presented in Section 5, shows that
programming models where management of locality and paral-



Programming model Task creation Granularity Locality Scheduling data transfers
Sequoia [10] explicit explicit explicit implicit
Cellgen implicit implicit implicit implicit
Cell SDK 3.0 [15] explicit explicit explicit explicit

Table 1: Programming model exploration space.

lelism is implicit are not necessarily inferior to programming mod-
els where the management of locality and parallelism is explicit.
Implicit programming models can benefit from a compiler that can
analyze references to data residing in off-chip memory and sched-
ule data transfers so as to optimize data-computation overlap. We
present a framework providing these capabilities in the context of
the Cellgen programming model.

We stipulate that programming models with implicit manage-
ment of parallelism and locality help programmer productivity,
since the programmer writes less code; is concerned with a high-
level view of locality (i.e. what data is shared and what data is
private, instead of who produces and consumes the data); and re-
lies more on the compiler and the runtime environment for man-
aging parallelism and locality. For parallel applications dominated
by data parallelism, we find that explicit task to core mapping is
not always necessary. Furthermore, explicit partitioning of the data
set of programs into working sets, an arguably tedious process, can
be automated in the compiler/runtime environment for codes with
affine accesses to arrays.

High-level programming models introduce inevitable overhead
in the runtime system. We find that in some cases, this overhead is
attributed to incompleteness or lack of functionality. Functionalities
lacking in the programming models we explore include shared data
among tasks in a computation context, dynamic mapping of tasks
to cores for load balancing, defining multiple tasks with different
data requirements, and participation of the master thread in com-
putation. In other cases, overheads are imposed by the abstraction
provided by the programming model, such as the transformation of
simple array accesses to data transfers and local storage accesses.
Minimizing these overheads is essential for developing unintrusive
and scalable programming models.

2. Hardware Environment
The Cell is a heterogeneous multi-core processor [5]. One of the
cores, the Power Processing Element (PPE), is a 64-bit two-way
SMT PowerPC core with 32 KB of L1-I and L2-D cache, and 512-
KB of L2 cache. The other eight cores on the Cell are homoge-
neous, 128-bit SIMD-RISC processors. They are called Synergistic
Processing Elements (SPEs) and they are typically used as acceler-
ators of data-intensive computation. Each processor has a 128-bit
data path, 128 128-bit registers, and 256 KB of software-managed
local store. The SPEs can issue two instructions per cycle into
two (odd/even) pipelines. One pipeline implements floating point
instructions, whereas the other implements branches, load/stores
and channel communication instructions, which we will describe
shortly.

The SPEs execute code and load/store data exclusively out of
their local stores. They communicate with off-chip memory and
with the local stores of other SPEs through Direct Memory Ac-
cesses (DMAs). DMAs are posted with channel commands from
the SPE core to the Memory Flow Controller (MFC). Each MFC
has a queue which can hold up to 16 outstanding DMA requests,
each of which can send or receive op to 16 KB of contiguous
data. The effective addresses of DMAs are translated to physical
addresses using the PowerPC memory translation mechanisms.

The PPE, SPEs, memory controller and I/O controller are in-
terconnected via the Element Interconnect Bus (EIB). The EIB has

#pragma c e l l un ro l l (16) SPE start (0) SPE stop (N/4 ) \
reduct ion (+ : double l = lnL ) \
pr ivate (double∗ f req = model−>daStateFreqs ) \
shared (double∗ sroot = tree−>root−>s i teL ike , \

int∗ weight = g ds . compressedWeight . v )
{

int i ;
for ( i = SPE start ; i < SPE stop ; i ++) {

double temp ;
temp = sroot [ ( i ∗4)]∗ f req [ 0 ] + sroot [ ( i ∗4)+1]∗ f req [ 1 ] +

sroot [ ( i ∗4)+2]∗ f req [ 2 ] + sroot [ ( i ∗4)+3]∗ f req [ 3 ] ;
temp = log ( temp ) ;
l += weight [ i ] ∗ temp ;

}
}

Figure 1: Cellgen code example of the likelihood calculation in PBPI (see
Section 4.3).

two rings moving data clockwise, two rings moving data counter-
clockwise, and one address ring. The EIB operates at half the pro-
cessor clock frequency and its maximum theoretical bandwidth is
204.8 GB/s. (This assumes all units connected to the EIB can snoop
one address per EIB cycle and for each snooped address the EIB
transfers a maximum of 128 bytes.) Actual point-to-point band-
width ranges from 78 to 197 GB/s, depending on several factors,
including the position of the units (SPEs, PPE, controllers) on the
ring.

Off-chip memory is based on XDR Rambus technology and off-
chip memory access bandwidth is 25.6 GB/s inbound/outbound.

3. Programming Models
In this section, we discuss the characteristics and specific imple-
mentations of the two programming models in this study. We also
contrast these methods with programming for the Cell directly us-
ing the Software Development Toolkit.

3.1 Cellgen
Cellgen implements a subset of OpenMP on the Cell [18]. An ex-
ample of Cellgen code taken from PBPI [11] is given in Figure 1.
The model uses a source-to-source optimizing compiler. Program-
mers identify parallel sections of their code in the form of loops ac-
cessing particular segments of memory. Programmers need to an-
notate these sections to mark them for parallel execution, and to
indicate how the data accessed in these sections should be handled.
This model provides the abstraction of a shared-memory architec-
ture and an indirect and implicit abstraction of data locality, via the
annotation of the data set accessed by each parallel section. While
the data sets used by each parallel section are annotated, the code
inside these regions is not; it is written in the same way it would be
for a sequential program.

Data is annotated as private or shared, using the same keywords
as in OpenMP. Private variables follow OpenMP semantics. They
are copied into local stores using DMAs and each SPE gets a pri-
vate copy of the variable. Shared variables are further classified
internally in the Cellgen compiler as in, out, or inout variables,
using reference analysis. This classification departs from OpenMP
semantics and serves as the main vehicle for managing locality on
Cell. In data need to be streamed into the SPE’s local store, out data
needs to be streamed out of local stores, and inout data needs to be



streamed both in and out of local stores. By annotating the data ref-
erenced in the parallel section, programmers implicitly tell Cellgen
what data they want transferred to and from the local stores. The
Cellgen compiler takes care of managing locality, by triggering and
dynamically scheduling the associated data transfers. Note also that
the abstraction of shared memory is not implemented on top of a
coherent software cache [2]. Coherence and locality are managed
transparently by the compiler/runtime system, per user directives
annotating data accesses.

Being able to stream in/out /inout data simultaneously in Cell-
gen is paramount for two reasons: the local stores are small, so
they can only contain a fraction of the working sets of parallel sec-
tions; and the DMA time required to move data in and out of local
stores may dominate performance. Overlapping DMAs with com-
putation is necessary to achieve high performance. Data classified
by the compiler as in or out are streamed using double-buffering,
while inout data are streamed using triple buffering. The number
of states a variable can be in determines the depth of buffering. In
variables can be either streaming in, or computing; out variables
can be either computing or streaming out; inout variables can be
streaming in, computing, or streaming out. The Cellgen compiler
creates a buffer for each of these states. For array references inside
parallel sections, the goal is to maximize computation/DMA over-
lap by having different array elements in two (for in and out arrays)
or three (for inout arrays) states simultaneously.

Overlapping the computation and communication hides the
memory transfer latency. This latency can be further hidden by un-
rolling loops, and Cellgen unrolls loops according to a programmer
provided unroll factor. One of our goals in these experiments is to
determine if we can deduce an unroll factor implicitly. In conven-
tional loop unrolling, the limiting factor is the number of available
registers; register spillage causes hits to the cache and main mem-
ory. On a Cell SPE, the limiting factor are the DMAs; the time it
takes to transfer data to main memory dominates any effects from
using too many registers. By unrolling loop iterations, more data
can be transferred in a single DMA, amortizing the startup costs of
the transfer.

SPEs operate on independent loop iterations in parallel. Cell-
gen, like OpenMP, assumes that it is the programmer’s responsibil-
ity to ensure that loop iterations are in fact independent. However,
scheduling of loop iterations to SPEs is done by the compiler. The
current implementation uses static scheduling, where the iterations
are divided equally among all SPEs. We anticipate introducing dy-
namic loop scheduling policies in the near future.

3.2 Sequoia
The second class of programming models that we consider in this
study expresses parallelism through explicit task and data subdivi-
sion. We use Sequoia [10] as a representative of these models. In
Sequoia, the programmer constructs trees of dependent tasks where
the inner tasks call tasks further down the tree; the real computation
typically occurs in leaf tasks. At each level, the data is decomposed
and copied to the child tasks as specified, which enforces the model
that each task has a private address space. Figure 2 repeats the ex-
ample of Figure 1 using Sequoia.

Locality is strictly enforced by Sequoia because tasks can only
reference local data. In this manner, there can be a direct mapping
of tasks to the Cell architecture where the SPE local storage is di-
vorced from the typical memory hierarchy. By providing a pro-
gramming model where tasks operate on local data, and provid-
ing abstractions to subdivide data and pass it on to subtasks, Se-
quoia is able to abstract away the underlying architecture from pro-
grammers. Sequoia allows programmers to explicitly define data
and computation subdivision through a specialized notation. Using
these definitions, the Sequoia compiler generates code which divide

void task<leaf> Sum: : Leaf ( in double A[L ] , inout double B[L ] )
{

B[0 ] += A[ 0 ] ;
}

void task<inner> Likel ihood : : Inner ( in double sroot [N] ,
in double f req [M] , in int weight [P] , out double lnL [L ] )
{

tunable T;
mapreduce(unsigned int i = 0 : (N+T−1)/T) {

Likel ihood ( sroot [ i∗T;T] , freq [0 ;3 ] ,
weight [ i∗T/4 ;T/4 ] , reducearg<lnL , Sum>);

}
}

void task<leaf> Likel ihood : : Leaf ( in double sroot [N] ,
in double f req [M] , in int weight [P] , inout double lnL [L ] )
{

unsigned int i , j ;
double temp ;

for ( i = 0; i < P; i ++) {
j = 4 ∗ i ;
temp = sroot [ j ] ∗ f req [0 ] + sroot [ j +1] ∗ f req [1 ] +

sroot [ j +2] ∗ f req [2 ] + sroot [ j +3] ∗ f req [ 3 ] ;
temp = log (temp ) ;
lnL [0 ] += weight [ i ] ∗ temp ;

}
}

Figure 2: Sequoia code example of the likelihood calculation in PBPI (see
Section 4.3).

and transfer the data between tasks and performs the computations
on the data as described by programmers for the specific architec-
ture. The mappings of data to tasks and tasks to hardware are fixed
at compile time.

In Sequoia, application users may suggest to the compiler cer-
tain optimization approaches such as double buffering for transfer-
ring data and an alternative strategy of mapping data divisions to
subtasks. The compiler generates optimized code based on these
hints, if possible.

While one of the goals of Sequoia is to free the programmer
from having to be aware of underlying data transfer mechanisms,
the current Sequoia runtime system does not support transferring
non-contiguous data. This is a shortcoming of Cellgen as well. Se-
quoia tries to ensure that programmers are free from the aware-
ness of the architectural constraints such as the DMA size and data
alignment requirements by providing an interface to allocate ar-
rays. Programmers are expected to use such an interface to allocate
arrays which are handled by Sequoia. When a programmer makes
a request for an array of a particular size, the amount actually al-
located by Sequoia may be larger. It must be at least 16 bytes to
satisfy the DMA size constraint, and it must be a multiple of 16
bytes to satisfy the DMA alignment constraint. Additionally, Se-
quoia must allocate memory for the data structure that describes
the array.

Sequoia also provides an interface to copy an ordinary array to
an array allocated by the Sequoia interface. When applying the Se-
quoia framework to a given reference code, programmers allocate
Sequoia arrays and copy existing arrays to the Sequoia counterparts
before calling the Sequoia computation kernel. Conforming to this
assures that the architectural constrains are satisfied at the cost of
additional copying overhead.

In our experiments, we use the customized array allocation in-
terface which allocates space for the Sequoia array structure only—
it does not actually allocate any extra data. We then manually point
the Sequoia array data structure to the existing data. Therefore,
the DMA constraints are explicitly taken care of in our experi-
ments when an array is allocated. This technique avoids unneces-



serial Cell SDK Sequoia Cellgen
CellStream 195 +602 +78 +9
Fixedgrid 5,565 +1,040 +214 +34
PBPI 8,623 +721 +165 +5

Table 2: Lines of code for each application using each programming model.
In case of Sequoia, we counted the lines in mapping files as well as those in
Sequoia source files. We do not count comments or empty lines.

sary copies from application managed data to Sequoia managed
data, as well as unnecessary allocations.

3.3 Cell SDK
Our third programming model is the Cell SDK 3.0, as provided by
IBM. The SDK exposes architectural details of the Cell to the pro-
grammer, such as SIMD intrinsics for SPE code. It also provides
libraries for low-level, Pthread style thread-based parallelization,
and sets of DMA commands based on a get/put interface for man-
aging locality and data transfers.

Programming in the Cell SDK is analogous, if not harder, than
programming with MPI or POSIX threads on a typical cluster or
multiprocessor. The programmer needs both a deep understanding
of thread-level parallelization and a deep understanding of the Cell
hardware.

While programming models can transparently manage data
transfers, the Cell SDK requires all data transfers to be explic-
itly identified and scheduled by the programmer. Furthermore, the
programmer is solely responsible for data alignment, for setting up
and sizing buffers to achieve computation/communication overlap,
and for synchronizing threads running on different cores. However,
hand-tuned parallelization also has well-known advantages. A pro-
grammer with insight into the parallel algorithm and the Cell archi-
tecture can maximize locality, eliminate unnecessary data transfers
and schedule data and computation on cores in an optimal manner.

4. Applications
For our analysis, we use three applications: a memory bandwidth
benchmark and two realistic supercomputer-class applications. We
present these applications in the order of decreasing size of the
granularity of parallelism that they exploit on Cell.

4.1 CellStream
We developed a memory bandwidth benchmark called CellStream
to understand how to maximize SPE to main memory data trans-
fers. It was designed so that a small computational kernel can be
dropped in to perform work on data as it streams through SPEs.
If no computational kernel is used and synchronization is ignored,
the benchmark is able to match the performance of the sequential
read/write DMA benchmark bundled with the Cell SDK 3.0 [16].

We implemented a reference version which runs solely on the
PPE. It shares the same design as those that use an SPE, except that
all work is performed on the PPE. The purpose of this implementa-
tion is to provide a baseline for comparison.

4.1.1 Parallelization with Cell SDK
Data is processed through a three stage pipeline, where a separate
PPE thread is used for each stage. The first stage uses a PPE thread
to read a file from disk into buffers of a predetermined size. The
second stage offloads each buffer to the SPEs to process, and the
third stage writes the processed data to an output file.

The benchmark can use the SPEs in various ways to measure the
bandwidth of different parts of the architecture. Each SPE reads
in data from a source, process that data and then passes it on to
a destination. The source and destination can be main memory or

another SPE. Data streams can be created by specifying where each
SPE should expect input data from and send output data to. Using
this framework, the bandwidth inside of the Cell BE can be utilized
efficiently.

The PPE has three buffers that it rotates among the three threads
so each has a buffer to work on. The SPE uses double buffering with
fencing to continuously stream data in and out of the SPE. Fencing
DMA calls are able to fill a local SPE buffer as soon as its previous
contents are committed back to main memory without requiring
the SPE to wait. CellStream uses DMA transfer sizes of 16 KB to
maximize transfer bandwidth.

4.1.2 Parallelization with Cellgen
The Cellgen version of CellStream shares the same three-stage
pipeline design as the hand-written version. The difference is in
how the data is transferred to the SPE. The minimal processing
kernel is placed inside a Cellgen code section, and the directive
explicitly sets the DMA buffer size to 16 KB. The code generated
by Cellgen is similar to that of the hand-written version, so the size,
number and order of the DMA calls are the same.

4.1.3 Parallelization with Sequoia
Like the Cellgen version, the Sequoia version of CellStream only
concerns itself with streaming data through a single SPE while
leaving the behavior of the PPE the same. A leaf task is defined
to set every byte in the target array to a certain value in order to
achieve this behavior.

4.2 Fixedgrid
Fixedgrid is a comprehensive prototypical atmospheric model writ-
ten entirely in C. It describes chemical transport via a third order
upwind-biased advection discretization and second order diffusion
discretization [17, 23, 14]. An implicit Rosenbrock method is used
to integrate a 79-species SAPRC’99 atmospheric chemical mecha-
nism for VOCs and NOx on every grid point [4]. Chemical or trans-
port processes can be selectively disabled to observe their effect on
monitored concentrations.

To calculate mass flux on a two-dimensional domain, a two-
component wind vector, horizontal diffusion tensor, and concentra-
tions for every species of interest must be calculated. To promote
data contiguity, Fixedgrid stores the data according to function. The
latitudinal wind field, longitudinal wind field, and horizontal diffu-
sion tensor, are each stored in a separate NX × NY array, where
NX and NY are the width and height of the domain, respectively.
Concentration data is stored in a NS×NX×NY array, where NS is
the number of monitored chemical species. To calculate ozone (O3)
concentrations on a 600 × 600 domain as in our experiments, ap-
proximately 1,080,000 double-precision values (8.24 MB) are cal-
culated at each time step and 25,920,000 double precision values
(24.7 MB) are used in the calculation.

4.2.1 Parallelization
To apply the discretized transport equations at a given point, we
only require information at that point and at that point’s immediate
neighbors in the dimension of interest. This allows us to apply the
discretization equations to each dimension independently, and is
known as dimension splitting. Fixedgrid uses dimension splitting to
reduce the two-dimensional problem into a set of one-dimensional
problems, and to introduce a high degree of parallelism. Using this
method, the discretization equations can be implemented as a single
computational routine and applied to each row and column of the
concentration matrix individually and in parallel.

Dimension splitting introduces a local truncation error. Fixed-
grid employs first-order time splitting to reduce the truncation er-
ror. A half time step is used when calculating mass flux along the



domain’s x-axis, and a whole time step is used when calculating
mass flux along the domain’s y-axis. This process is equal to cal-
culating the mass flux in one step, but reduces truncation error by
O(h2) [14]. Note that this doubles the work required to calculate
mass flux for a full row of the concentration matrix. Consequently,
we want row discretization to be efficient. All atmospheric data is
ordered to keep rows contiguous in memory, thus exploiting local-
ity and facilitating DMA transfers between main memory and SPE
local storage.

The block nature of Fixedgrid’s domain makes it ideally paral-
lelizable across many CPUs. Distributing a large matrix computa-
tion across many CPUs is a thoroughly explored problem, so we
consider execution on only one Cell node.

4.2.2 Parallelization with Cell SDK
Fixedgrid has been parallelized and hand-tuned for the Cell Broad-
band Engine using the function offloading model. The discretized
transport equations are offloaded to the SPEs, and PPE-SPE com-
munication is done through DMAs. For each time step, the PPE di-
vides the domain into as many blocks as there are SPEs and passes
each SPE a pointer to each block. The PPE instructs the SPE to per-
form row-order or column-order discretization, and the SPE loops
over as many rows/columns are in the block, calculating transport
on each row/column. The PPE idles until the SPE signals that the
entire block has been processed.

The Cell’s stringent memory alignment and contiguity require-
ments make column discretization much more complex than row
discretization. Row data is contiguous and 128-byte aligned, and
therefore can be fetched directly from main memory with simple
DMA calls. Column data is non-contiguous and, due to the 8-byte
size of a double precision float, approximately half the columns
will always be incorrectly aligned in memory.

There are two solutions for transferring column data to and from
main memory: the PPE may buffer and reorder the data before the
SPE fetches it, or the SPE may use DMA lists to fetch the data
directly.

Reordering the data on the PPE is much simpler programmati-
cally, and it recovers wasted cycles. However, this bottlenecks the
flow of data to the SPEs, since a single process is responsible for
reordering data for many concurrently-executing processes.

Alternatively, the SPEs may use DMA lists to fetch and reorder
the data directly. This greatly increases the complexity of the pro-
gram for two reasons. First, DMA lists must be generated for each
new column before the data is fetched. Second, the data is inter-
leaved across columns when it arrives in local storage, so vector in-
trinsics must be used to manipulate the interleaved data. However,
the benefit is that distributing the data reordering process facilitates
a higher data flow.

Memory transfers are triple-buffered so each SPE simultane-
ously fetches the next row/column of data, calculates transport on
data in local storage, and writes previously-calculated results back
to main memory.

4.2.3 Parallelization with Cellgen
The original approach taken for porting Fixedgrid to Cell maps
cleanly to the OpenMP style of data parallelism that Cellgen pro-
vides. The discretized transport equations were already imple-
mented as a data parallel computation, and the original data de-
composition among SPEs is the same as provided by Cellgen. The
only difficulty is that the current implementation of Cellgen does
not support column accesses. In order to overcome this, we re-
order the column data into contiguous memory before and after the
Cellgen regions.

Once the data has been re-ordered, the Cellgen directive only
needs to indicate the range of the iteration variables and specify
which variables are shared and which are private.

4.2.4 Parallelization with Sequoia
Sequoia has the same difficulty in dealing with column access. Al-
though it has language constructs for accessing non-contiguous lo-
cations of an array, the current runtime implementation of Sequoia
does not support it. Therefore, column data is reordered before and
after the Sequoia entry point task is called. Each of the column dis-
cretization functions is defined as a task. The tunable data array
division is set to the length of the column or row, as required by a
single discretization kernel call.

4.3 PBPI
PBPI is a parallel implementation of the Bayesian phylogenetic in-
ference method, which constructs phylogenetic trees from DNA or
AA sequences using a Markov chain Monte Carlo (MCMC) sam-
pling method. The computation time of a Bayesian phylogenetic
inference based on MCMC is determined by two factors: the length
of the Markov chains for approximating the posterior probability of
the phylogenetic trees and the computation time needed for evalu-
ating the likelihood values at each generation. The length of the
Markov chains can be reduced by developing improved MCMC
strategies to propose high quality candidate states and to make bet-
ter acceptance/rejection decisions; the computation time per gen-
eration can be sped up by optimizing the likelihood evaluation
and exploiting parallelism. PBPI implements both techniques, and
achieves linear speedup with the number of processors for large
problem sizes.

For our experiments, we used a data set of 107 taxa with 19,989
nucleotides for a tree. There are three computational loops that are
called for a total of 324,071 times and account for the majority of
the execution time of the program. The first loop accounts for 88%
of the calls, and requires 1.2 MB to compute a result of 0.6 MB;
the second loop accounts for 6% of the calls and requires 1.8 MB
to compute a result of 0.6 MB; and the third also accounts for 6%
of the calls and requires 0.6 MB to compute a result of 8 bytes.

4.3.1 Parallelization
PBPI uses Metropolis-coupled MCMC (MC3) to explore multiple
areas of potentially optimal phylogenetic trees while maintaining
a fast execution time. There are two natural approaches to exploit-
ing parallelism in Metropolis-coupled MCMC: chain-level paral-
lelization and sub-sequence-level parallelization. Chain-level par-
allelization divides chains among processors; each processor is re-
sponsible for one or more chains. Subsequence-level parallelization
divides the whole sequence among processors; each processor is re-
sponsible for a segment of the sequence, and communications con-
tribute to computing the global likelihood by collecting local like-
lihood from all processors. PBPI combines these two-approaches
and maps the computation task of one cycle into a two-dimensional
grid topology.

The processor pool is arranged as an c × r two-dimensional
Cartesian grid. The data set is split into c segments, and each
column is assigned one segment. The chains are divided into r
groups, and each row is assigned one group of chains. When c = 1,
the arrangement becomes chain-level parallel; when r = 1, the
arrangement becomes subsequence-level parallel.

PBPI was originally implemented in MPI, and was subsequently
ported to Cell. The Cell implementation exploits data parallelism
present in subsequence-level computations by off-loading the com-
putationally expensive likelihood estimation functions to SPEs and
applying Cell-specific optimizations on the off-loaded code such as
double buffering and vectorization.



PPE only Cell SDK Sequoia Cellgen
GBytes/sec 1.24 6.49 6.46 6.44

Table 3: Data bandwidth through the PPE in the PPE only implementation
and through a SPE in three parallel implementations of CellStream.

In all of our experiments, PBPI is configured to run with a single
chain and a single group such that parallelization is achieved only
by data decomposition on multiple SPEs.

4.3.2 Parallelization with Cellgen
PBPI was parallelized with Cellgen by first identifying the most
computationally expensive loops in the program. The loops in-
volved in the maximum likelihood calculation account for more
than 98% of the total execution of PBPI. These loops are called
frequently, and operate on a large enough data set that there is ben-
efit from streaming the data. We can also determine from inspection
that the loop iterations are independent.

Each of the three loops is annotated with a Cellgen pragma
which specifies which variables are private to the loop, which
variables are shared among the iterations, the stopping and starting
conditions of the loop, and the reduction variables, if any. We
experimentally determined the best unroll factor for each loop, and
specified that unroll factor in the Cellgen directive.

4.3.3 Parallelization with Sequoia
The same loops as the ones chosen by Cellgen for parallelization
are defined as tasks. The tunable value for data division determines
the DMA buffer size for data arrays. We experiment with various
tunable settings to see how they affect performance.

5. Performance Analysis
For a quantitative analysis, we compare the performance of each
implementation of each application. The experimental environment
is a Sony PlayStation 3 running Linux with a 2.6.24 kernel and
Cell IBM SDK 3.0. On a PS3 running Linux, only six SPEs are
available. The compiler is gcc 4.1.2 with full optimizations turned
on. Each data point, except for CellStream, represents the best of
40 runs; we found this more reproducible and representative than
the average. For CellStream, the average is more appropriate.

5.1 CellStream
Table 3 shows the peak bandwidth achieved by the Cellgen and
Sequoia programming models, a hand written version using the
Cell SDK directly, and the PPE only version. The test streamed
a 192 MB file cached in memory through a single SPE in 16
KB chunks (except in the PPE only version). The bandwidth was
calculated by dividing the total data transferred by the amount
of time spent working. Any extra time spent by the PPE threads
reading in and writing to disk was not factored in. The PPE only
version ran solely on the PPE and modified the memory by using a
memset call on the data. It serves as a baseline for comparison, as
it represents what can be achieved without the aid of the SPEs.

Table 3 indicates the bandwidth of streaming the data from main
memory to the SPE and back to main memory. Data streaming re-
quires a DMA get, some processing, and a DMA put command.
The bandwidth calculations in Table 3 are the total data transferred
divided by the time the SPE was busy. This SPE busy time includes
reading and writing of the data, so each 16 KB of data had two
DMA operations performed on it. In order to get the average band-
width per DMA operation, the bandwidth numbers listed in Table 3
would have to be doubled.

Sequoia and Cellgen both achieve nearly equal results as the
hand written version. This is to be expected as all three implemen-
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Figure 3: Performance of each Fixedgrid implementation.

tations issued 24,576 DMA calls of 16 KB each (12,288 reads and
12,288 writes). The only difference between the hand written ver-
sion and the models is the use of double buffering with DMA fenc-
ing calls in the former and triple buffering in the latter. The fencing
calls used in the hand written version have shown a slight speed up
compared to using an extra buffer.

The main bottleneck in all implementations is the Memory In-
terface Controller. The MIC can access the memory at a rate of 16
bytes per bus cycle. The EIB operates at 1.6 GHz in our experi-
ments (half of the CPU clock frequency) which gives a theoretical
peak speed of 25.6 GB/s. Benchmarks which use optimistic, un-
synchronized communication have achieved SPE copy speeds at
30% of peak performance (7.68 GB/s) [16].

5.2 Fixedgrid
We experimented with nine different implementations of Fixedgrid
to see how the handling of non-contiguous data transfers affects the
performance of the application. These implementations represent
the choices for how an implicit model can abstract strided accesses.
Currently, neither Cellgen nor Sequoia handles strided access to
memory transparently.

Fixedgrid has two types of computational kernels: the row dis-
cretization kernel and the column discretization kernel. The former
requires row data from a contiguous region of memory, and the lat-



ter requires column data from a non-contiguous region of memory.
For each time-step iteration, the former is called twice as much as
the latter is. In the serial version, column data is copied to a contigu-
ous buffer as each column is needed by the column discretization
kernel running on the PPE. The row/column discretization kernel
requires a row/column from three different matrices to compute a
result row/column.

The serial-reorder version maintains a transposed copy of each
matrix. Therefore, no buffer is used in the column discretization
kernel in contrast to the serial version. Instead, the values of each
transposed matrix are copied as a whole from the original matrix
before the column discretization kernel. They are then copied back
as a whole to the original matrix after the computation. The ker-
nel accesses data directly from the transposed matrix. This version
benefits from higher locality than the serial version since the trans-
formation from row-major to column-major format is grouped by
each matrix. Consequently, the serial-reorder version spends less
time copying column data as shown in Figure 3(a). The rest of
the implementations—except DMAlist—are based on the serial-
reorder version. Therefore, they all spend similar amount of time
copying column data on the PPE. There is also a smaller amount
of time spent copying row data in both of the serial versions. This
operation is replaced by DMA calls in other versions.

The Cellgen and Sequoia versions are implemented with two
types of SPE kernels: conventional operations (as in the serial ver-
sions) and SIMD operations. Both of the handed-coded versions,
DMAlist and PPE-reorder, are only implemented with the SIMD
kernel. The Cellgen and Sequoia versions with non-SIMD kernel
show similar performance.

In Sequoia, we test two strategies for mapping data sub-blocks
to subtasks, labeled Sequoia-ib100 and Sequoia-ib1. The difference
between Sequoia-ib100 and Sequoia-ib1 is the mapping of data
sub-blocks to subtasks. Mapping configuration files allow users to
specify the interblock mapping strategy that Sequoia uses to decide
how data is distributed to subtasks. When the interblock option is
set to 100 (Sequoia-ib100), Sequoia performs a block distribution
of data with a block size of 100; task0 takes from block0 to block99,
task1 takes from block100 to block199, etc. When the interblock
option is set to 1 (Sequoia-ib1), Sequoia performs an interleaved
assignment of data to tasks with a block size of 1; task0 takes
block0, block6, block12, task1 takes block1, block7, block13, etc.,
given that there are six subtasks for six SPEs.

The Cellgen version assigns blocks of contiguous iterations to
each SPE. The block size is determined at runtime so that each SPE
gets as close to an equal amount of work as possible. This division
of work is similar to the Sequoia version when the interblock
mapping strategy is 100. It exhibits load imbalance due to the data
dependency in computation cost, as shown in Figure 3(b).

The DMAlist implementation of Fixedgrid uses DMA lists to
transfer columns of data. DMA lists are the only mechanism pro-
vided by the Cell to perform scatter/gather operations. Column ac-
cesses are achieved by constructing lists of DMAs for each element
in the column. However, since the minimum size of a DMA is 16
bytes, and each element is an 8 byte floating point value, DMA lists
transfer unnecessary data. The SIMD operations also work on the
data that was transferred as an artifact of the minimum DMA size.
Unlike the other versions, DMAlist does not require column data
to be reordered on the PPE or SPE.

In the PPE-reorder version, to make the same kernel work on
non-interleaved row data, it is obtained by a DMA transfer and is
interleaved into a vector array twice as large as the data itself. This
copy operation on SPUs introduces the row array copy overhead
shown in Figure 3(b). Since columns also require copying—they
are reorganized into contiguous arrays—both row and column dis-
cretization kernels rely on copying operations.
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Figure 4: Performance of each PBPI implementation using six SPEs.

The computation of an array element in the Fixedgrid kernel
is dependent on the preceding elements in the array. Therefore, it
is not possible to further utilize vector operations by condensing a
vector array. However, it is possible to utilize wasted vector opera-
tion cycles if two row/column elements are fetched and computed
at the same time. When a row result is ready in an interleaved ar-
ray, it is copied back to a non-interleaved buffer array on the local
storage for bulk DMA transfer. Cellgen and Sequoia versions with
the SIMD kernel rely on the same data rearrangement strategy as
that of the PPE-reorder version. Overall, we find that the lack of
support for automatic generation of DMA scatter/gather operations
is the key reason for the performance gap between the high-level
programming models and the hand-tuned version of Fixedgrid.

5.3 PBPI
Applications with a fine granularity of parallelism are sensitive
to the size and frequency of DMAs between the SPE and main
memory. Since PBPI is such an application, we experimented with
different buffer sizes, as shown in Figure 4(a).

With the manual implementation, the optimal performance of
PBPI was achieved with a buffer size of 8 KB. The best Sequoia
performance was with a buffer size of 4 KB. With Cellgen, the best
performance was achieved with a buffer size of 2 KB which is used
in 64 unrolled iterations of a computational loop.

The principle behind loop unrolling on the SPE is to maximize
the overlap of computation and communication. As the unroll fac-
tor increases, so does the amount of data transferred for each DMA.
If the size of the DMA is too small, the data transfers can not keep
up with the computation. But, as the unroll factor increases, so too
does the code size, and eventually the code size becomes too large
for the SPE. The best unrolling factor balances DMA size, compu-
tation time and code size. Cellgen programmers control loop un-
rolling by explicitly setting the unroll factor in the directive. Cell-



gen uses this unroll factor to choose a buffer size based on the use
of the array inside the loop. These experiments are the groundwork
towards deducing the best unroll factor at compile time.

The major factors that influence performance in all three cases
are the performance of the computational kernel which is either
manually written or generated for the SPE; the overhead of DMA
related operations; the extra overheads on SPEs generated by the
programming model runtime; and the overhead of signaling be-
tween PPE and SPE, as shown in Figure 4(b).

The SPE computational kernel generated by Sequoia relies on
data structures to describe the array organization. Array accesses
incur overhead due to the additional computation needed to trans-
late the programmer’s intent to Sequoia’s data layout. This over-
head is an instance of a programming model abstraction impact-
ing performance. Similar overheads specific to Sequoia include the
constraint checking for the size and alignment of DMA data and
the DMA buffer padding to satisfy the constraints.

There are two differences between the SPE computational ker-
nel generated by Cellgen and the computational kernel from the
reference code: loop unrolling and a modulus operation introduced
to each array access to translate a main memory address to an SPE
buffer address. The hand-coded kernel is loop-unrolled and vec-
torized. The total execution time and the SPE kernel time of each
implementation are shown in Figures 5(a), 5(b), and 5(c).

In Cellgen, the iterations are distributed to the SPEs once, before
the computation starts, as opposed to dynamically on demand as
the SPEs complete iterations. If the distribution of iterations is
imbalanced, there may be variance in the time it takes for a single
SPE to complete its iterations. The SPE that takes the longest holds
up the rest of the computation. The imbalance is a result of using
the prescribed buffer size as the atomic unit upon which to divide
iterations. As the buffer size increases, the SPE with the most work
can have proportionally increasing work. This is the reason that the
minimum and maximum SPE kernel time diverge for Cellgen, as
shown in Figure 5(b).

Sequoia DMA performance benefits from the redundant copy
elimination strategy, which avoids unnecessary DMAs when the
same data is used in multiple locations. Cellgen obtains a similar
benefit for data declared as private; the data is DMAed to each SPE
only once.

The multi-buffering DMA scheme is used to hide DMA data
transfer overhead in all three implementations. However, DMA
transfer overhead is exposed when waiting for the completion of
the DMA command at the beginning and at the end of the iterations,
where there is no computation to overlap with. This overhead
becomes more pronounced as the buffer size increases. On the other
hand, when computation completely overlaps the data transfer,
the major overhead is the cost of checking the completion of a
transfer, which decreases as the DMA buffer size increases and the
number of DMA calls decreases. When the transfer time of a DMA
becomes larger than the computation time for an iteration, it cannot
be hidden completely and is exposed as overhead. The DMA wait
overhead shown in Figures 5(d), 5(e), and 5(f) includes the cost
of checking the completion of DMA transfers and their exposed
overhead. The DMA prepare overhead includes the cost of issuing
DMA commands and the cost of manipulating buffer addresses and
DMA tags.

To optimally run an application like PBPI, it is important to bal-
ance the DMA data transfer and computation costs. The cross-over
point is reached with different buffer sizes in the three implementa-
tions. This difference is due to the variance in the execution time for
an iteration in each version. The variance exists because each pro-
gramming model provides different abstractions which have differ-
ent associated overheads.

The DMA wait overhead becomes minimal when the buffer
size is 2 KB in the hand-coded case, while it becomes so at 4 KB
for Cellgen and 8 KB for Sequoia. This discrepancy is due to the
difference in the cost of the generated computational kernel and
data transfer strategies. Optimal performance is achieved when the
sum of the computation costs and all related data transfer overheads
is minimal. All data transfer overheads include the exposed wait
time for DMAs, time spent to prepare DMAs, and time spent to
verify DMA completion. This can be seen in Figure 5, as the best
performance for each implementation is achieved when the sum
of computation costs (SPE kernel ) and the exposed data transfer
overheads (DMA wait and DMA prepare) are at their minimum.
This minimum occurs for the hand-written version at 8 KB, at 2
KB for Cellgen, and at 8 KB for Sequoia.

In the hand-coded case, the epilogue (which includes the com-
putation and communication for the final iterations which are not
a multiple of the buffer size) is inefficient: one DMA is issued for
each iteration. In Cellgen and Sequoia, one DMA command is is-
sued for the entire remainder of the data. SPE overheads incurred
from each DMA transfer decrease as the buffer size increases, and
overheads related to an SPE parallel region (such as barriers and
signaling) decrease as the total number of parallel regions are called
at runtime.

Sequoia has other overheads on the SPE, shown in Figure 5(f),
including barriers, reductions, and extra copies of scalar variables
which are artifacts of the Sequoia compilation process. Such over-
heads become noticeable when there is a large number of offloaded
function calls. There are 324,071 offloaded function calls in a PBPI
run, while there are only 2,592 and 12 offloaded function calls in
Fixedgrid and CellStream respectively.

At the end of a leaf task, Sequoia sometimes requires the SPEs
to synchronize among themselves for a barrier. In contrast, Cellgen
does not require such a barrier among SPEs. Instead, each SPE
waits until all outstanding DMAs have completed and then sets a
status value in its local storage to indicate completion. The PPE
polls these values in each SPE directly, waiting for all SPEs to
complete. Cellgen relies on a similar method for collecting the
result from SPEs for reduction operations, while Sequoia relies on
the DMA and barriers among SPEs. For PBPI, the current Cellgen
reduction method is efficient because the reduction data is a single
variable. In cases where multiple values are reduced, however, the
Sequoia method of using SPEs for reduction operation might be
superior. The signaling method used is also different: Sequoia relies
on the mailbox communication protocol provided by the Cell SDK,
while Cellgen accesses the memory directly. The direct access
generally performs better.1

6. Related Work
Our study broadly covers two classes of programming models for
accelerator-based multi-core processors with explicitly managed
memory hierarchies. The first class uses data annotations to spec-
ify the data read and written by any given task scheduled to ex-
ecute on an accelerator. Programming models such as Cell Su-
perScalar [3], RapidMind [19] and ALF [7] use a high-level task
specification with input, output and in/out data attributes. These
programming models differ primarily in the internal representation
and management of tasks and data transfers. The IBM ALF pro-
gramming framework automates double buffering using an internal
decision tree. The decision tree specifies how many buffers to use
(four, three or two) based on the size of the in/out data in each
task. Cell SuperScalar automates double buffering through the use
of task bundles. Users specify a group of tasks, and the execution

1 We have observed that mailbox communication performs 20 times slower
than DMAs with Linux kernel 2.6.23 and 3 times slower with 2.6.24.
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Figure 5: The impact of DMA buffer size on the performance of each PBPI implementation. SPE kernelmax and SPE kernelmin show the maximum and the
minimum time spent by SPE kernels among 6 SPEs respectively. The total runtime is bounded by the sum of the maximum kernel time and other overheads.

of a given task in the group is overlapped with the input transfer of
a following task and the output transfer of a preceding task. In both
ALF and Cell SuperScalar, overlapping is achieved through explicit
specification of the tasks and their working sets, rather than through
implicit decomposition of a large task and its data set into pieces,
which is the case with Cellgen.

Cellgen derives from OpenMP [18] and similar programming
models based on the abstraction of a shared address space. Re-
cent efforts for extending OpenMP with directives that manage de-
pendent tasks [9] are directed towards improving locality by auto-
matically managing dependencies (data transfers), between tasks
executing on different processors or accelerators. Cellgen takes
a different path, by managing locality and communication over-
lap through implicit task and data decomposition. Streaming lan-
guages [8, 12, 13] also expose data locality to the programmer
via the stream abstraction. Decomposing data streams into in/out
blocks and buffering these blocks in local memories is the equiva-
lent of decomposing loops into tasks and scheduling the transfers
for the in/out sets of each task in Cellgen. Earlier studies on stream-
ing languages for both conventional and streaming processor archi-
tectures [13, 8] have demonstrated that the stream abstraction en-
ables locality optimization via compiler/runtime support. A similar
argument is made in this paper for Cellgen, promoting programma-
bility without performance penalty.

7. Conclusions
Through the study of three programming models of varying com-
plexity, we have shown that implicit management of both paral-
lelism and locality can produce code with performance compara-
ble to that of hand-tuned code and code generated from explicit
management of locality. Generating such code requires adequate
compiler and runtime support, but it also reduces the programming
effort as measured by lines of code.

We have demonstrated this point with Cellgen, a programming
model which uses private/shared data classification clauses as the
sole mechanism for managing locality. In Cellgen, performance
optimization through user intervention is required only to prop-
erly manage the granularity of parallel tasks and the distribution of
work and data between cores. Both these optimizations are imple-
mented implicitly through parameters passed to directives and do
not add substantial programming effort. Furthermore, the compiler
and runtime system can be extended to integrate more scheduling
algorithms—such as dynamic, interleaved, or work stealing—to
further ease the task of the programmer in managing granularity
and scheduling.

As expected, we have shown the sensitivity of programming
models to data transferring overheads. Each programming model
imposes additional specific overheads to each data transfer, and the
implementation needs to mask both the endemic overheads of the
programming model and the actual data transfer overheads with
proper scaling and distribution of the computation. Bulk DMA
transfers and elimination of extraneous DMAs for point-to-point
and global synchronization improve the performance of high-level
programming models, provided that the compiler analysis is pow-
erful enough to perform these optimizations.

This work has certain limitations that we intend to address in fu-
ture research. Although we selected two programming models that
we believe represent the broader spectrum of models proposed for
explicitly managed memory hierarchies, our evaluation is not ex-
haustive. In particular, it is possible that programming models with
explicit task and locality management could outperform implicit
programming models with applications where statically summariz-
ing and analyzing data access patterns is difficult. Irregular appli-
cations such as molecular dynamics simulations may exhibit this
problem. The problem is also well documented by the paralleliz-
ing/optimizing compiler literature [20]. We believe that a high-level
specification of the input/output data sets of tasks is a good starting



point to simplify the analysis required to schedule irregular data
transfers through the compiler. Models like Cellgen, which provide
higher-level data specification clauses, may face difficulties in im-
plementing certain data transfer optimizations. Further research is
required in this space.

In terms of applications studied, we did not investigate appli-
cations with inherent load imbalance; the imbalances in our ex-
periments are artifacts of the runtime environment. Inherently im-
balanced applications would require further support for dynamic
scheduling of tasks in both programming models used in this study.
An interesting question here is if the scheduling algorithms that are
typically readily available by programming models for use—such
as static, dynamic, and guided in OpenMP—need to be revised in
view of the specific characteristics of heterogeneous multi-core ar-
chitectures. In the Cell for example, we have found that setting
the default block size for loop iterations and data is not obvious
and may incur significant load imbalance, even in theoretically per-
fectly balanced loops.

We did not investigate applications with irregular and unpre-
dictable data access patterns, where the potential for prefetching
and data buffering is limited because of the lack of compile time
and runtime information about future data accesses. Such applica-
tions raise challenges for both homogeneous cache-based and het-
erogeneous multi-core architectures with software-managed local
storage, and investigating the relative performance of the two plat-
forms remains an open question. Furthermore, we made no effort to
expose more than one layers of task and data parallelism across the
cores through the programming models, although several applica-
tions might benefit from such an approach. We are exploring these
issues in ongoing work.
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