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We are now seeing diminishing returns from classic single-core processor designs, yet the num-
ber of transistors available for a processor is still increasing. Processor architects are there-
fore experimenting with a variety of multicore processor designs. Heterogeneous multicore
processors with Explicitly Managed Memory (EMM) hierarchies are one such experimental
design which has the potential for high performance, but at the cost of great programmer
effort. EMM processors have cores that are divorced from the normal memory hierarchy,
thus the onus is on the programmer to manage locality and parallelism. This dissertation
presents the Cellgen source-to-source compiler which moves some of this complexity back
into the compiler. Cellgen offers a directive-based programming model with semantics simi-
lar to OpenMP for the Cell Broadband Engine, a general-purpose processor with EMM. The
compiler implicitly handles locality and parallelism, schedules memory transfers for data par-
allel regions of code, and provides performance predictions which can be leveraged to make
scheduling decisions. We compare this approach to using a software cache, to a different
programming model which is task based with explicit data transfers, and to programming
the Cell directly using the native SDK. We also present a case study which uses the Cellgen
compiler in a comparison across multiple kinds of multicore architectures: heterogeneous,
homogeneous and radically data-parallel graphics processors.
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Chapter 1

Introduction: The Potential and
Challenges of Heterogeneous
Multicore Processors

Processor designs are changing in fundamental ways. In the past, processor architects were
able to improve performance by continuing to exploit instruction level parallelism (ILP) and
adding to the cache hierarchy. While designers used different techniques to exploit ILP over
the years—such as Very Long Instruction Words versus superscalar—the fundamental idea
was to squeeze as much performance as possible from a single instruction stream.

These techniques have hit their limit. Long instruction pipelines are needed to keep many
instructions in flight at once, using different functional units in parallel. As instruction
pipelines grow, they incur several complications. The cost of mispredicted branches increases;
it is more difficult to balance the cost of each stage; and they are more prone to stalls from
cache misses. Even aggressive out-of-order processors are limited by the amount of ILP that
exists in an instruction stream.

Meanwhile, the number of transistors available to processor architects continues to increase,
consistent with Moore’s Law. Faced with a still increasing transistor budget and old designs
based on exploiting ILP that no longer scale, architects are forced to explore new designs.
These designs no longer rely solely on ILP, but instead provide hardware amenable to both
thread and data level parallelism. These new designs are referred to as multicore processors
because there are at least two execution cores with distinct execution pipelines, functional
units and usually one level of private cache.

Some multicore processors are homogeneous: each of the cores is the same. Such homo-
geneous multicores typically have an architecture in which multiple sequential cores share
a cache. Programming a homogeneous multicore is similar to programming a Symmetric
Multiprocessor (SMP), where multiple sequential processors are connected to a single shared
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main memory. Message passing paradigms are possible on such multicores, but they are per-
haps most naturally programmed with shared memory, multithreaded techniques. In fact,
multithreaded approaches that worked on SMPs will work on homogeneous multicores in the
exact same manner since memory is shared among all cores in the same way that memory
is shared among all processors on an SMP.

Heterogeneous multicore processors have at least one core that is different than the others.
Heterogeneity introduces complexity because now either the programmer or a runtime system
must determine why and how certain code should run on certain cores. Yet, heterogeneity is
desirable for performance reasons. There are two arguments in support of the performance
potential of heterogeneity, depending the kind of heterogeneous architecture.

Heterogeneity comes in two flavors: single instruction set architectures (single ISA) and
multiple instruction set architectures (multiple ISA). Consider a multicore processor with
many simple cores that are identical. Eventually, adding more cores of the same kind will
manifest as diminishing performance returns at the application level. This observation is a
result of Amdahl’s Law: more simple cores will speedup the parallel regions of the application,
but the sequential regions of the application will have to run on the same simple cores.
Eventually the sequential regions running on the simple cores will become the application’s
bottleneck. At this point, a larger sequential core that would take up the die space of
several simple cores could help overall performance [45]. This approach can also lead to
more power efficient processors [63, 93]. This reasoning applies to both single ISA and
multiple ISA heterogeneous processors. For single ISA processors, the larger core has the
same functionality as the smaller cores, but it has better sequential performance.

Multiple ISA heterogeneous processors open up another opportunity for improved perfor-
mance. A multiple ISA design can allocate one core to handle running the operating system
and interfacing with external devices. The other cores are free to be specialized; if they
do not need to run operating system code or interface with other devices, there are fewer
constraints on their design. Such cores can be designed specifically for such tasks as dense
floating point computations or branch-heavy integer codes. Specialized cores are also free to
eschew a traditional memory hierarchy in favor of manual control which has the potential
for higher performance.

Recent homogeneous multicore processors have focused on thread level parallelism, but an
emerging set of heterogeneous multicores also relies on data parallelism. Architectures such
as Larabee [92], the Cell Broadband Engine [23], Pangaea [99] and AMD Fusion [1] merge
the CPU and GPU onto the same chip. These are heterogeneous multicore processors; some
of the cores have classical designs similar to general purpose processors of the past, while the
rest of the cores are specialized vector processors. In this set, the Cell is also a representative
of an architecture with an explicitly managed memory hierarchy (EMM). The Cell’s vector
cores require software management, as they are divorced from the normal memory hierarchy.

By exposing multiple kinds of parallelism, these designs have the potential for high perfor-
mance. However, the burden for extracting this performance is on programmers more than
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before. For sequential processors, both the compiler and the processor itself were respon-
sible for extracting ILP from sequential code. However, multicore processors require that
programmers write code with significant thread or data level parallelism. Writing thread
and data parallel code has been the domain of high-performance computing for decades.
Processor architects have provided novel processor designs, and it falls on the systems and
high-performance computing community to explore how to best program these processors.

Currently, writing high performance applications for heterogeneous EMM processors requires
an intimate understanding of the underlying hardware and familiarity with the provided
API. The APIs for these processors (such as CUDA for GPUs and IBM’s Cell SDK) expose
architectural details to the programmer. Programming in such environments is analogous
to application development in assembly, writing multithreaded programs exclusively with
Pthreads, or implementing distributed applications in MPI. All of these methods require
knowledge of the underlying mechanisms to produce a working program. Optimizing the
program requires extensive architectural knowledge.

Our approach to solve the programmability problem for heterogeneous multicores is to pro-
vide a shared memory abstraction. This dissertation presents the design, implementation
and performance evaluation of such an abstraction. But, before presenting a shared memory
abstraction for heterogeneous multicores, we first discuss parallel programming models in
general.

1.1 Parallel Programming Paradigms

There are two dominant parallel programming paradigms: shared memory and message
passing. Shared memory parallel programming has a productivity advantage over message
passing, although message passing programs have a greater potential for scalability. In this
section we introduce these two paradigms in order to motivate why we chose a programming
model based on shared memory to solve the productivity and performance challenge of
heterogeneous multicores.

Shared memory parallel programming is usually accomplished with some form of multi-
threading, where multiple threads on the same node share the same address space. Threads
can effortlessly communicate because they operate in the same address space, so explicit syn-
chronization must be used to prevent communication when it would lead to incorrect results.
The dominant basic building block for multithreading on Unix based operating systems is
the POSIX Threads (Pthreads) API [54]. Pthreads have various synchronization primitives
for coordinating the progress of a computation and memory accesses: mutexes are used to
indicate when a thread should have exclusive access to a region of code; condition variables
are used for one thread to wait on a signal, and another thread to send that signal; and
barriers for when no threads should proceed until all threads have reached the same point.

The main strength of native multithreaded parallel programming—ease of communication
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among threads—is also its main weakness. Multithreaded programs are notoriously difficult
to code correctly because it is easy to accidentally read or write data without synchroniz-
ing; the order and kind of synchronization required even for relatively simple problems can
be non-obvious; and even the guarantees from the hardware and software stack are poorly
understood by most programmers [8, 73]. While multithreading is powerful, the free-for-all
approach of using Pthreads directly is low-level. There are many common tasks in multi-
threaded programs: maintaining a pool of worker threads, dissembling a larger computation
into smaller tasks, distributing these tasks to worker threads, load balancing the work across
all worker threads, and synchronizing worker threads.

OpenMP [75, 87] handles all of these common tasks, relieving the programmer from having
to contend with them. It is a directive-based extension to C, C++ and Fortran—languages
commonly used in high performance computing. It was originally used to parallelize com-
putational loops often seen in scientific applications with heavy use of matrices and vectors.
Parallelizing such loops exploits data parallelism. OpenMP has also been extended to in-
clude directives to manage task parallelism, which will be less regular than data parallel
loops. The gain in productivity is that OpenMP programmers do not have to concern them-
selves with such details as when or how to create new threads, how to distribute their data
among these threads and how to synchronize and initiate the computation itself among the
threads. OpenMP’s compiler and runtime do the work of mapping sequential code annotated
with parallel directives to parallel execution.

Shared memory parallel programming models whose implementations depend on shared
memory implemented at the hardware level have a fundamental limitation: they cannot
use more than one compute node. They have a fundamental dependence on shared physical
memory; there are no mechanisms to communicate with addresses spaces on separate nodes.
Message passing paradigms do not have this limitation.

Message passing paradigms assume that the computing infrastructure is composed of mul-
tiple nodes with distinct memory address spaces. That is, each compute node can only
directly reference its own memory. Communication—of both data and intention—must oc-
cur through discrete messages sent from process to process. The de facto standard for
distributed computing is the Message Passing Interface (MPI) [82]. MPI abstracts inter-
process communication, which may take place on the same compute node, or may take place
between different compute nodes across a network. MPI is provided as a library for C, C++
and Fortran, while other languages have provided bindings that call into these standard def-
initions. There are two main classes of communication types available to MPI programmers:
point-to-point communication and collective communication. Point-to-point communication
is used for sending or receiving data from one process to another. Collective communica-
tions are used when one process communicates with the rest of the processes involved in the
computation. Typically, the process initiating collective communication is the master pro-
cess used to control the progression of the computation. Master processes perform collective
operations such as broadcast (sending the same data to all processes), scatter (dispersing
elements of a set to all processes), gather (receiving elements of a set from all processes) and
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synchronization operations such as a barrier (preventing all processes from proceeding until
they reach the same point in the computation).

While MPI does abstract how the inter-process communication occurs (such as over the net-
work or normal inter-process communication on the same node), it does not provide a high-
level abstraction for constructing parallel programs. Parallel programs based on message
passing have enormous scaling potential—some message passing applications can scale to
thousands of cores, with near linear speedup. In practice, however, achieving such speedups
is difficult. Programmers must understand the runtime communication patterns of the vari-
ous components of their application to determine the best communication schedule. Shared
memory parallel programming has difficulty scaling to the same degree as message passing
because it inherently depends on a single, shared address space. Despite this limitation,
implementations of shared memory programming models, such as OpenMP, are popular for
their productivity gains [37, 48]. Reasonable investments of programmer effort and time can
yield applications that can at least scale with the number of cores on a single node that
share an address space.

1.2 Implementing Shared Memory Abstractions on Het-
erogeneous Multicores

We propose using a shared memory parallel programming model to address the difficulties
with programming heterogeneous multicores. However, implementing such an abstraction
has many challenges. The processor we use as an example heterogeneous multicore processor
is the Cell [23, 53]. The Cell’s heterogeneity and the fact that it is an EMM processor present
considerable programming difficulties. We first present the salient architectural details of
the Cell processor before enumerating the challenges associated with implementing a shared
memory parallel programming model on such an architecture.

1.2.1 Cell Specifications

The architecture of the heterogeneous multicore Cell processor is shown in Figure 1.1. One
of the cores, the Power Processing Element (PPE), is a 64-bit two-way SMT PowerPC. The
other eight cores are 128-bit SIMD-RISC processors called Synergistic Processing Elements
(SPEs) and they are typically used as accelerators for data-intensive computation. Each
SPE has a 128-bit data path, 128 128-bit registers, and 256 KB of software-managed local
store. SPEs can issue two instructions per cycle into two pipelines. One pipeline implements
floating point instructions, whereas the other implements branches, load/stores and channel
communication instructions.

The SPEs exclusively use code and data from their local stores. They communicate with
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Figure 1.1: Cell architecture. The PPE is a typical PowerPC core with hardware managed caches.
The SPEs have a programmer-controlled Local Store which communicates with the Memory Inter-
face Controller through their Memory Flow Controller.

off-chip memory and with the local stores of other SPEs through Direct Memory Accesses
(DMAs). DMAs are posted with channel commands to the Memory Flow Controller (MFC).
Each MFC has a queue which can hold up to 16 outstanding DMA requests, each of which can
send or receive up to 16 KB of contiguous data. The PPE, SPEs, MIC and I/O controller
communicate via the Element Interconnect Bus (EIB), which has a maximum theoretical
bandwidth of 204.8 GB/s [9].

1.2.2 Challenges Stemming from Heterogeneity

Implementing a parallel programming model that depends on shared memory is simple when
the underlying hardware implements shared memory. On a heterogeneous multicore without
such hardware support, a compiler and runtime system that supports shared memory must
contend with the following challenges:

Local Memory Spaces Effective use of the Cell requires offloading as much computation
as possible to the SPEs. The difficulty this situation presents is that the SPEs are
divorced from the normal memory hierarchy. Each SPE has a local storage of 256
KB, and this is the only memory it can directly address. Data must be placed in the
local storage explicitly by the programmer. Consequently, programmers must know
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the memory access patterns in their application. SPEs can communicate directly with
other SPEs, or with main memory through DMAs.

Small Local Storage The 256 KB local storage associated with each SPE contains both
all of the code and all of the data the SPE uses. Due to the limited amount of data that
can fit into the local storage, streaming data in such a way that communication and
computation are overlapped is necessary for good performance. Programmers must
be able to anticipate what data they will need for future computations, and initiate
DMAs to prefetch this data while other data is in use for computation, or being written
back to memory. Overlapping computation and communication can hide the latency
associated with DMAs. The relatively large number of outstanding DMAs supported
by the MFC further encourages the use of aggressive prefetching and multibuffering
techniques for latency overlap.
Further, the small local storage limits the use of recursion. Since the local storage
contains all code and all data, the stack frames depth for function calls is severely
constrained.

Strided Access A single DMA transfers contiguous data; Cell has no architectural support
for strided access to main memory. There are three options for accessing non-contiguous
regions of memory:

1. Normal DMAs which transfer the entire contiguous region the strided data resides
in. This technique transfers unnecessary data—in the case of large strides, it will
transfer a large amount of unnecessary data.

2. Multiple DMAs issued in succession to the MFC. However, the MFC can only
have 16 outstanding DMAs, so the 17th DMA will block.

3. Construct DMA lists, and issue a single DMA list instruction to the MFC. Each
entry in a DMA list specifies a separate DMA, and it is the programmer’s re-
sponsibility to ensure that memory addresses for all subsequent entries in the list
adhere to the required stride.

In most cases, DMA lists are the most efficient method. Transferring large amounts of
unnecessary memory is infeasible for large strides, and the chance of a large number
of DMAs blocking is high for multiple DMAs. There is overhead—both in terms of
programmer effort and execution time—to constructing the DMA lists. However, this
overhead is usually outweighed by the inability of multiple DMAs to scale past 16, and
the large amount of unnecessary data single DMAs must transfer.

Data Alignment All DMAs of less than 16 bytes must be naturally aligned in both main
memory and in the SPE’s local storage. That is, transfers of 1, 2, 4 and 8 bytes must
be aligned on a 1, 2, 4 or 8 byte boundary respectively. Transfers larger than or equal
to 16 bytes must be aligned on a 16 byte boundary—but for best performance, data
should be aligned on cache line boundaries (128 bytes).
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Such an architecture presents many of the programming difficulties of both message pass-
ing and shared memory parallel programming. Using DMAs to transfer data to and from
the SPEs is similar to using messages to transfer data in distributed computations. This
similarity means that programming the Cell processor shares programming difficulties with
distributed computing. But, the DMAs among all of the SPEs are in the same address space.
As a consequence of sharing the same address space, many of the same problems from shared
memory multithreading are present, such as race conditions and accidentally changing values
without the proper synchronization. The Cell presents a “worst of both worlds” scenario to
programmers that develop natively for the architecture and system software that seeks to
abstract it.

1.2.3 Required Functionality

The preceding challenges imply the functionality that an implementation of shared memory
on a heterogeneous architecture must have. Task creation and scheduling exist as require-
ments when implementing such programming models on shared memory architectures, but
the preceding challenges make it more difficult on a heterogeneous platform. The remaining
functionality are unique to such an architecture.

Task creation On Cell, the SPEs are independent vector cores with small local memories
that execute independently of the main core, the PPE. We must transparently creates
these tasks. Being able to execute arbitrary code on the SPEs requires infrastruc-
ture that programmers would have to implement by hand for every offloaded region,
and for each application. We must eliminate this concern by generating the needed
infrastructure.

Parameter passing Transferring parameters to newly created tasks requires knowledge of
PPE and SPE communication. We must handle passing parameters to the SPEs upon
task creation.

Task scheduling We must determine how to divide user data for parallel execution, and
how to distribute that data among the SPEs. We attempt to distribute data as evenly
as possible among the SPEs while still adhering to Cell’s data alignment constraints.

Buffer management We allocate, deallocate and determine the size of local data buffers
for each offloaded region. Local buffers are needed because of the small local storage
on the SPEs—the common solution to the limited space is to stream data through the
SPEs. By determining the size of the buffers and handling their resource usage, we
alleviates programmers from having to consider the SPE’s small local storage.

Data communication We must automatically generate Direct Memory Accesses (DMAs)
for all shared data. (A DMA is a transfer of data directly to or from main memory.)
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We must also determine through static analyses which variables need DMAs from main
memory to the SPEs, which need DMAs from the SPEs to main memory and which
need both. Further, we need to determine if a series of variable references represent a
contiguous or strided access to main memory. For strided accesses, we determine the
size of the stride and generates code to handle a non-contiguous memory access.

Results transmission For computations which reduce a computation to a single result, we
must handle collecting individuals results from the SPEs and aggregating them into a
single result for use by subsequent code on the PPE.

Through automated task scheduling, buffer management and on-demand communication,
we are able to provide the abstraction of a single address space among all SPEs. Program-
mers provide sequential, data-parallel loops with directives indicating which variables will be
shared among the SPEs, and our compiler and runtime system generates high performance
code that handles all of the above issues. Our shared memory abstraction provides a solu-
tion for how to program a heterogeneous multicore processor with reasonable effort while
still realizing its performance potential.

1.3 Contributions

At the start of this work, there were many open questions and difficulties that we either
aimed to solve, or had to contend with as part of our solutions. The following problems are
directly addressed by this dissertation.

• What high-level code representation is suitable for expressing parallelism on a hetero-
geneous multicore EMM processor?

• What kinds of computations can be expressed in such a programming model and still
maintain high performance?

• What level of compiler and runtime support is necessary to enable such computations?

• In terms of performance, how does such compiler and runtime support compare to the
usage of a software cache?

• How do programming models with implicit data transfers compare in terms of pro-
grammability and performance to programming models with explicit data transfers
when programming for heterogeneous multicore processors?

• Given that several kinds of multicore processors are now available, how do they compare
to each other with regards to the kinds of computations that they readily support?
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It is the job of the high performance computing community to assess the applicability of
our current parallel programming techniques to the newly emerging multicore processors.
Techniques which abstract the underlying hardware as much as possible are more likely to
be adopted by the widest community. Therefore, we have to assess both the programma-
bility of these techniques, and demonstrate their ability to achieve high performance. This
dissertation makes the following contributions towards this goal.

• The first published (Schneider et al. [91]) shared memory abstraction for a heteroge-
neous multicore processor that does not depend on a software cache.

– An empirical evaluation which demonstrates that with adequate compiler and
runtime support, programs written using a high-level shared memory abstrac-
tion that hides architectural details can still attain performance comparable to
applications written by programmers optimizing specifically for that architecture.

– Code transformation techniques for replacing references to shared variables with
the corresponding references to a local buffer and the data transfers necessary
to both implement the abstraction of a shared address space and maintain high
performance.

– Scheduling dense computations at runtime for heterogeneous architectures with
restrictive alignment constraints.

– Supporting stencil code accesses in a shared memory abstraction across hetero-
geneous cores with separate memory spaces through access analysis at compile
time, and a system of rotating buffers at runtime.

– A simple model for determining an appropriate buffer size for multibuffering that
balances using a large buffer with ensuring there are enough transfers to overlap
with computation.

– Performance prediction of computational loops expressed in a shared memory
programming model based on a compile-time analysis of the computation’s in-
structions and a runtime data transfer model.

• Empirical evaluation demonstrating the significant performance advantages in imple-
menting a shared memory abstraction for heterogeneous multicores using direct multi-
buffering instead of a software cache. (Presented in Chapter 4.)

• Quantitative and qualitative comparison of two different programming abstractions for
heterogeneous multicores: task based with explicit data division and shared memory
with implicit data transfers [91].

• A case study comparing streaming aggregation across three different parallel hardware
architectures that represent the current spectrum of available multicores: a homoge-
neous multicore, a heterogeneous multicore, and a graphics processor [90]. This case
study presents the following findings:



11

– A GPU’s connection to main memory is ill-suited for data-movement bound al-
gorithms that perform a single pass through memory.

– A GPU’s connection to main memory is also ill-suited for fine-grained memory
transfers.

– Starting from similar shared-memory implementations, a compiler which can rec-
ognize and generate explicit data transfers for regular memory access patterns
can outperform a homogeneous processor that depends on a hardware controlled
cache.

These findings point to the importance of future multicore architectures having a low-
latency, high bandwidth connection to main memory in order to be able to exploit
more kinds of parallelism.

Heterogeneity is likely to be important in the future of computing—high performance com-
puting and even into mainstream programming. The work presented in this dissertation
lays the groundwork for how to program such processors in such a way to maintain both
productivity and performance.



Chapter 2

Cellgen: Using Shared Memory
Abstractions to Program a
Heterogeneous Multicore Processor

Cellgen is a compiler that supports a shared memory abstraction on the Cell processor. It
started as an attempt to allow PPE and SPE code to live in the same source file. Soon after
Cellgen started supporting communication across the PPE-SPE boundary, it became clear
the programming model we wanted to support was similar to OpenMP [75]. Offloading data-
parallel sections of code to the SPEs naturally fit with the applications we had experience
with on Cell.

This chapter provides a brief tutorial for how to program using Cellgen. Cellgen shares
some semantics with OpenMP, but legal OpenMP code is not necessarily legal Cellgen code,
and vice-versa. This distinction exists because the design approach in Cellgen was to only
support memory access patterns that we knew how to generate high performance code for.
Over time, Cellgen has been able to support increasingly more kinds of accesses, but it still
does not support all access patterns that a full OpenMP implementation does. This chapter
presents a brief tutorial of Cellgen, which serves to both provide the reader with an intuitive
feel for the programming model and to highlight supported features.

Cellgen is a source-to-source compiler: it accepts C code and emits C code. The current
workflow requires a programmer to call cellgen on a ∗.cellgen file, which will produce code for
both the PPE and SPE. Currently, we rely on the sophisticated Make files provided by the
IBM SDK [52] to produce executable code.

In all of these code examples, we assume the Cellgen blocks of code reside in a legal C
program.

The full source code for Cellgen is available at http://www.cs.vt.edu/~scschnei/cellgen.

12
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2.1 Supported Computations

The remainder of this chapter shows what kinds of computations Cellgen supports through
example. In this section, however, we explicitly state what kinds of computations Cellgen
supports.

Regarding syntax for denoting a Cell region, Cellgen requires the #pragma cell directive
immediately followed by a set of opening and closing braces to enclose the computation
that will execute on the SPEs. Directives for shared and private variables are not actually
required. However, a Cell region that has no set of shared variables will not be able to
perform any work that will be visible to the rest of the application. While both shared and
private directives can be used to transfer data to the SPEs, only variables in a shared set can
be used to transfer data out of an SPE. Hence, any interesting Cell region will have at least
one variable listed in its shared set.

The majority of the programming model semantics is focused on the kinds of accesses that are
legal to shared variables. There exists a fundamental distinction between in and out accesses.
An in access appears on the right-hand side of an equals sign; it is part of a computation.
An out access appears on the left-hand side of an equals sign; it is where a computation
will be stored. Cellgen is more restrictive with allowable out accesses than with in accesses
because every out access is implicitly a write to a location in main memory. Consequently,
out accesses can only be simple combinations of induction variables. For a single dimensional
shared variable named a with induction variable i, the only legal out access is a[i]. If a is
instead a two-dimensional matrix with induction variables i and j, then the only two legal
out accesses are a[i][j] and a[j][i]. This pattern continues into the higher dimensions: there
is no restriction on the order of accesses, but each individual use of an induction variable
must be that induction variable itself. The result of this pattern is that for each iteration
(including iterations in nested loops), we are guaranteed that only one iteration will write
to one element in the shared variable.

All legal accesses for out variables are also legal accesses for in variables. The accesses that
are legal for only in variables are both more interesting and less restrictive. We require
that all out variable accesses are independent across iterations because of the potential for
write-after-write data races. For in variables, no such races will happen since we are strictly
reading values; there is no harm in reading the same memory location across multiple SPEs.
As a consequence, we can relax the independence requirement. This happens in two manners:
stencil accesses and unrolled multi-dimensional accesses.

Stencil accesses involve an offset to the induction variable, such as a[i + c] or a[i − c] where
c is any constant known at compile time. Stencil accesses are allowed in all dimensions, and
can even be used independently—such as a[i − 2][j + 3], or just a[i + 4][j].

Cellgen also supports unrolled multi-dimensional accesses on single dimensional shared vari-
ables. Such accesses are in the form of a[i ∗ n + c] where n is a constant known at compile
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time and c is less than n. While this access looks like a stencil access, it is semantically
the same as a[i][c] assuming that n is the second dimension. The benefit of supporting this
special case is that when n is relatively small, the data transfer strategy would transfer many
buffers of size n. It is more efficient to transfer buffers that are multiples of n.

All accesses that do not fall into the above categories are illegal. In particular, the set of
illegal accesses includes using a function to index a shared variable, such as a[f(i)] or using the
values of one shared variable to index another, such as a[b[i]]. The reason that these accesses
are illegal is that they are irregular; the memory access pattern cannot be determined at
compile time based on static code analysis. Cellgen does not support irregular accesses,
although it is not impossible for it to do so. The work of Chen et al. [25] could be adapted
to work with buffers instead of a software cache.

The final consideration for the legality of an access is scope. Nested loops are allowed in
Cellgen (in fact, they are needed for multidimensional array accesses). Each loop must have
its own, distinct induction variable. Further, each access to a shared variable must use all of
the in-scope induction variables. For example, let a be a two-dimensional matrix, and further
assume we have two nested loops with induction variables i and j. In the second nested loop,
all of the above legal accesses are allowed. However, if we introduce a third nested loop, it
is illegal to access a directly inside of it—assuming that a is a two-dimensional matrix and
that valid accesses will involve only i and j. Of course, a can be used in the second-level
scope, and its values can be stored in local variables and that local variable can be used in
the third-level scope (see Section 2.6 for a concrete example). The reason for this restriction
is that every shared variable access is implicitly a request for a data transfer at that level
of scope. In the case of a, a value may be needed at the third-level scope, but it does not
require a data transfer at that level. It requires the data transfers at the second-level of
scope.

2.2 The Basics

All Cellgen code is preceded by a #pragma cell directive. Cellgen ignores all other lines of
code until it reaches that pragma. The Cellgen code is also enclosed in braces. The simplest
Cellgen code transfers no data in or out of the SPE:

#pragma cell
{
printf("Hello world");

}

This code will print the string "Hello world" from each SPE. All code within a Cellgen region
will be executed on the SPE, and all code outside will be executed on the PPE. In code:
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printf("I will always execute on the PPE.");

#pragma cell
{
printf("I will always execute on each SPE.");

}

In the previous two examples, the SPEs all behaved the same. While the Cellgen model is to
distribute the same code to each SPE, this model is only useful when each SPE operates on
separate data. In the following example, each SPE executes different parts of the iteration
space for a loop.

#pragma cell
{
int i;
for (i = 0; i < 10; ++i) {
printf("iteration %d\n", i);

}
}

In this case, each SPE executes a subset of the iteration space [0–10). We provide further
explanation of how each SPE determines its starting and stopping conditions in Section 3.6.

2.3 Computations with Flat Arrays

None of the prior examples performed any interesting computations or even transferred any
data beyond loop parameters. The following example multiplies each element of a single-
dimensional array by a constant.

int vector[SIZE];
int factor; // presumably set elsewhere

#pragma cell shared(int∗ v = vector) private(int f = factor, int N = SIZE)
{
int i;
for (i = 0; i < N; ++i) {
v[i] = v[i] ∗ f;

}
}
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This code sample introduces several new concepts. First, in order to pass data into a Cell
region, we must specify if it is shared or private. Variables declared shared will have their
data distributed among all SPEs, streamed in or out as needed. Cellgen performs reference
analysis to determine how to stream the variables, which we explain fully in Section 3.1. In
this example, the data for vector will be both streamed in and out of the SPEs; its result will
be visible to code beyond the Cell region. Variables declared private will be transferred to
each SPE once, and all SPEs will have their own local copy.

Each SPE will carry out its computation in parallel, and there is an implicit barrier at the end
of the Cell region. Note that all of the iterations of the loop are independent. For variables
whose data must be streamed out, it is the programmer’s responsibility to ensure that all
accesses are independent across iterations. For variables whose data is only streamed in, we
can relax this requirement, as shown in the Section 2.7. Cellgen enforces this constraint at
compile time.

2.4 Reductions

The result from the previous example was an entire array. Cellgen can also handle reductions,
where the computation relies on a large dataset, but the result is reduced to a single value.

int vector[SIZE];
int sum = 0;

#pragma cell shared(int∗ v = vector) reduction(+: int s = sum) private(int N = SIZE)
{
int i;
for (i = 0; i < N; ++i) {
s += v[i];

}
}

After all SPEs have finished, sum contains the summation of all elements of vector. Cellgen
supports reductions for addition (+) and multiplication (∗).

2.5 Multidimensional Arrays

Dense matrices are usually implemented with multidimensional arrays in C. Cellgen can
handle multidimensional arrays, but it requires more information than with flat arrays, and
some programmer assistance is required with column accesses.
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To start with, we shall consider row accesses. The following code multiplies each element of
a 3-dimensional array by a constant factor:

int matrix[N1][N2][N3];
int factor;

#pragma cell shared(int∗ m = matrix[N1][N2][N3]) private(int f = factor)
{
int i, j, k;
for (i = 0; i < N1; ++i) {
for (j = 0; j < N2; ++j) {
for (k = 0; k < N3; ++k) {
m[i][j][k] = m[i][j][k] ∗ f;

}
}

}
}

Cellgen needs to know the dimensions of the matrix, which are provided in the shared
directive. The dimensions can be either constants or variables only known at runtime.
Cellgen requires the matrix dimensions so that it can compute addresses for the DMAs
which will get and put values in main memory. All of the dimensions of the matrix are
implicitly passed as private variables.

Column accesses currently require more work from the programmer. Row accesses access
contiguous data in main memory. Data divisions for row accesses are made before the loop
starts, and all subsequent accesses are made in contiguous chunks beyond that original divi-
sion. This data division and access scheme ensures that row accesses are 16-byte aligned by
guaranteeing that the original data divisions are 16-byte aligned. Column accesses, however,
do not happen in contiguous chunks from a starting address. Rather, they access elements
that are separated by a certain stride. For this reason, it is not possible to ensure ahead
of time that all subsequent accesses will be correctly aligned. In order to ensure that the
column accesses will be legal, Cellgen requires that programmers pad their data. The same
computation as the previous example, but accessing columns:

typedef struct int16b_t {
int num;
char pad[12];

};

int16b_t matrix[N1][N2][N3];
int factor;
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#pragma cell shared(int16b_t∗ m = matrix[N1][N2][N3]) private(int f = factor)
{
int i, j, k;
for (i = 0; i < N2; ++i) {
for (j = 0; j < N3; ++j) {
for (k = 0; k < N1; ++k) {
m[k][i][j].num = m[k][i][j].num ∗ f;

}
}

}
}

All subsequent code examples that have accesses that end in .num imply that the programmer
must pad that data in the same manner shown above.

2.6 Matrix Multiplication

Consider the simplest expression of a matrix multiplication:

int a[N][N]
int b[N][N]
int c[N][N]
int i, j, k;
for (i = 0; i < N; ++i) {
for (j = 0; j < N; ++j) {
for (k = 0; k < N; ++k) {
c[i][j] += a[i][k] ∗ b[k][j];

}
}

}

Augmenting this exact sequential code with a Cellgen directive violates one of Cellgen’s
assumptions. The access c[i][j] in the inner-most loop does not use the nearest loop induction
variable, k, in its access. If Cellgen allowed such an access, it would generate incorrect DMA
accesses for the matrix c because of its placement in the loop. Consequently, such an access
is illegal, and Cellgen will flag it as an error. The correct way to express the computation in
Cellgen is:

#pragma cell shared(int∗ a = a[N][N], int16b_t∗ b = b[N][N], int∗ c = c[N][N])
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{
int i, j, k;
for (i = 0; i < N; ++i) {
for (j = 0; j < N; ++j) {
int sum = 0;
for (k = 0; k < N; ++k) {
sum += a[i][k] ∗ b[k][j].num;

}
c[i][j] = sum;

}
}

}

We moved the access c[i][j] outside of the inner-most loop so that it only resides in loops
whose induction variables it uses. Because Cellgen is an implicit programming model, access
placement matters—it uses access placement to infer programmer intentions. Putting a
shared variable inside the inner-most loop indicates that how often that shared variable
needs to send or receive data is a function of k. Instead, its accesses are only a function of i
and j, so we lift it out of the inner-most loop.

2.7 Stencil Accesses

Shared variables that are streamed out—variables that appear on the left-hand side of an
equals sign—must be accessed in such a way that each iteration’s access is independent. This
restriction avoids race conditions.

Shared variables that are exclusively streamed in, however, do not have such race conditions;
their values are only read, not written. Hence, we can relax the restriction that their accesses
must be independent. Legal accesses are affine expressions involving the induction variable—
expressions of the form ai + b where i is an induction variable. The following example
demonstrates a Jacobi iteration in Cellgen:

#pragma cell shared(double16b_t∗ a = a[N][N], double16b_t∗ b = b[N][N])
{
int i, j;
for (i = 1; i < N−1; ++i) {
for (j = 1; j < N−1; ++j) {
a[i][j].num = (b[i−1][j].num + b[i+1][j].num + b[i][j−1].num + b[i][j+1].num) / 4.0;

}
}

}
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Because b is only streamed in, we can relax our requirement that accesses to it must be
independent across iterations. Also note that Cellgen supports stencil accesses in two di-
mensions. This code requires padding because of the code transformations that Cellgen
applies to support high performance stencil accesses.

2.8 Summary

Cellgen is an implementation of a shared memory abstraction for the Cell processor. Such
an abstraction takes advantage of the fact that the vector cores’ DMAs all access the same
address space, but protects the programmer from having to contend with the DMAs them-
selves. However, any abstraction that hides complexities of the Cell’s heterogeneity must also
preserve performance. If such an abstraction is unable to realize the performance potential
of the underlying hardware, then there is no incentive to choose it over more conventional
processors.

This chapter demonstrated the kinds of accesses that Cellgen supports: regular array ac-
cesses, column accesses of multiple dimensions, and stencil accesses for read-only shared
variables. Supporting all kinds of accesses—including irregular accesses—is a goal, but we
will only support the kinds of accesses for which we can generate high performance code.
In the next chapter, we present in detail the kinds of transformations that we apply to the
code presented in this tutorial to achieve high performance on a heterogeneous multicore.



Chapter 3

Code Transformation: Generating
High Performance Code for
Heterogeneous Multicores

In this chapter we present the transformations which can take high-level code that assumes
shared memory and produce code that can execute on a heterogeneous multicore where each
of the cores has its own address space. This process requires analyzing how variables are used,
classifying variables based on their usage patterns, and then using these classifications to
infer the appropriate data transfer strategies. The first classification is analyzing assignments
to determine which direction to transfer data. All accesses must also be classified based on
how they access main memory: contiguously or with a known stride. Contiguous accesses
and strided accesses require generating different kinds of data transfers. A process similar
to strip-mining replaces all shared variable references to local buffer references along with
the appropriate data transfers. Stencil accesses require special handling both in terms of
buffer management and data transfers in order to maximize data reuse. Finally, runtime
information is used to determine the best data distribution and buffer size.

Our compiler, Cellgen, targets the Cell processor. These transformations, however, will be
necessary on any heterogeneous multicore processor with separate address spaces.

3.1 Reference Analysis

All values passed into accelerated sections are marked either private or shared, using the
same semantics as OpenMP. For the remainder of the section, we trace the transformation
of the following computation:

21
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#pragma cell private(double factor = f) shared(double16b_t∗ mtx = m[N1][N2][N3])
{
int i, j, k;
for (i = 0; i < N1; i++) {
for (j = 0; j < N3; j++) {
for (k = 0; k < N2; k++) {
mtx[i][k][j].num = mtx[i][k][j].num ∗ factor;

}
}

}
}

Private variables are scalars or arrays that are accessed independent of the loop induction
variable. Each SPE will see the same value, and will obtain its own local copy.

Shared variables are accessed using the loop induction variable, so their elements must be
shared among all of the SPEs. In order to maintain high performance, this data must be
streamed through the SPEs. How the variables are used in the accelerated region determines
what kind of streaming occurs. During semantic analysis, each time Cellgen encounters a
shared variable, it adds it to a set of in variables if it occurs on the right-hand side of an
equals sign, and to a set of out variables if it occurs on the left-hand side of an equals
sign. At each scope level (nested loop), Cellgen makes the determination for that scope of
the direction of the shared variables used in that scope. If a variable is used exclusively
on the right hand side of an assignment, it is transparently classified as an in variable by
the compiler, which will use double buffering in the generated code to DMA data into the
SPE. Cellgen determines the shared variables that appeared exclusively on the right-hand
side of an equals sign by subtracting the intersection of the two sets from the in set. If a
variable is used exclusively on the left hand side of assignment, then it is an out variable, and
the compiler will use double buffering to DMA data out of the SPE back to main memory.
Cellgen makes this determination by subtracting the intersection of the two sets from the out
set. Variables that appear on both sides of an assignment are classified as inout variables,
which are triple buffered to DMA data in and out of the SPE. Cellgen knows which variables
are inout because that is the intersection of the two sets.

The buffering principle is that a local buffer should exist for each state that a variable can be
in. In variables can be in two states: transferring data in, and computing. Out variables can
also be in two states: computing and transferring data out. Inout variables can be in three
states: transferring data in, computing, and transferring data out. Maintaining variables
in as many states as possible allows us to overlap computation and communication. This
technique uses more memory in the SPEs local store, but it allows for significant performance
gains by preventing computations from waiting on data from main memory.

In the prior example, Cellgen recognizes that mtx is used on both sides of an assignment,
and classifies it as an inout variable.
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3.2 Access Analysis

DMAs on the Cell can transfer only contiguous memory. Code on an SPE that needs
to access noncontiguous regions of memory—such as the columns of a matrix stored in
row-major format—must be handled differently than code that simply accesses contiguous
regions.

Cellgen recognizes noncontiguous multidimensional accesses by comparing the order of the
accesses with the most closely nested loop induction variable—the one changing the fastest.
If the nearest induction variable and the right-most access match, then the access pattern
is contiguous, and a single DMA can be used to transfer data. However, if the accesses and
induction variable don’t match, then Cellgen generates code to transfer noncontiguous data.

As explain in Section 1.2.2, noncontiguous data must be transferred with DMA lists on the
Cell. The lists are a special data structure in the SPE’s local storage that contains a list
of addresses and sizes that should be transferred. Cellgen will generate these lists and issue
the DMA to the MFC for all column accesses that it encounters.

In the example we are following throughout this section, Cellgen recognizes that the closest
induction variable to mtx’s access is k, which is the middle access. Since mtx is stored in
row-major format, Cellgen recognizes this access as a column access and will generate DMA
lists.

3.3 Buffer Substitution

During code generation for the SPE, all private and shared variables need their accesses
replaced with a local buffer access. For private variables, this is trivial since, by definition,
their value does not change during a loop. Shared variables require special handling.

The simplest technique for handling shared variables is to map the induction variable space
to the buffer space, as shown in the following example:

1 doublt16b_t ∗mtx_buf = malloc_align(sizeof(doublt16b_t) ∗ buf_sz);
2 dma_list mtx_lst;
3 int i, j, k;
4 for (i = spe_start; i < spe_stop; i++) {
5 for (j = 0; j < N3; j++) {
6 for (k = 0; k < N2; k++) {
7 if (!(k % buf_sz)) {
8 void∗ adr = mtx_adr + ((i ∗ N2 + k) ∗ N3) + j;
9 int stride = N3 ∗ sizeof(double16b_t);

10 mtx_lst = construct_dma_list(adr, buf_sz, stride);
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11 dma_list_in(mtx_buf, mtx_lst, adr);
12 }
13
14 // actual computation
15 mtx_buf[k % buf_sz] = mtx_buf[k % buf_sz] ∗ factor;
16
17 if (!((k+1) % buf_sz)) {
18 void∗ adr = mtx_adr + ((i∗ N2 + k + 1 − buf_sz) ∗ N3) + j;
19 int stride = N3 ∗ sizeof(double16b_t);
20 mtx_lst = construct_dma_list(adr, buf_sz, stride);
21 dma_list_out(mtx_buf, mtx_lst, adr);
22 }
23 }
24 }
25 }

This code example does not use multibuffering to simplify its presentation. The presented
code represents a technique which trivially handles variables with different buffer sizes. How-
ever, the mapping from iteration space to buffer space requires a modulus operation for every
shared variable access. The overhead from the modulus operation can be substantial.

A better technique is similar to strip-mining 1, as shown in the following:

1 doublt16b_t ∗mtx_buf = malloc_align(sizeof(doublt16b_t) ∗ buf_sz);
2 dma_list mtx_lst;
3 int i, j, k;
4 for (i = spe_start; i < spe_stop; i++) {
5 for (j = 0; j < N3; j++) {
6 int stop = N2 − (N2 % buf_sz);
7 for (k = 0; k < stop; k += buf_sz) {
8 void∗ adr = mtx_adr + ((i ∗ N2 + k) ∗ N3) + j;
9 int stride = N3 ∗ sizeof(double16b_t);

10 mtx_lst = construct_dma_list(adr, buf_sz, stride);
11 dma_list_in(mtx_buf, mtx_lst, adr);
12
13 int __k;
14 for (__k = 0; __k < buf_sz; __k++) {
15 mtx_buf[__k] = mtx_buf[__k] ∗ factor;
16 }
17
18 adr = mtx_adr + ((i ∗ N2 + k − buf_sz) ∗ N3) + j;

1Strip-mining is a compiler optimization technique which splits one loop into two nested loops. The
nested loop iterates over a fixed size. Strip-mining itself is not actually an optimization, but it can enable
other optimizations.
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19 mtx_lst = construct_dma_list(adr, buf_sz, stride);
20 dma_list_out(mtx_buf, mtx_lst, adr);
21 }
22 }
23 }

The modulus operation is avoided by introducing an additional loop. Since the SPE does
not have a dynamic branch predictor, it is usually best to avoid branches. However, the SPE
does have instructions for software hints that can reduce the cost of a correctly hinted branch
to a single cycle. Regular for loops such as the ones generated by Cellgen are amenable to
such software hints. Consequently, the extra branches are significantly less expensive than
the modulus operations.

An additional benefit is that the navie version also requires modulus operations and a branch
to determine if data should be streamed in or out (lines 7–12 and 17–22 in the naive version).
By adding an additional loop that consumes an entire buffer, we guarantee that when exe-
cution reaches the top or the bottom of the original loop, data is ready to be sent or received
(lines 8–11 and 18–20 in the strip-mined version). The benefit from this difference is not
requiring an expensive modulus operation, and not having a branch inside the computation
loop.

3.4 Multibuffering

The prior examples did not include multibuffering in order to highlight the overall buffer
substitution strategy. Multibuffering, however, is the means by which Cellgen is able to
overlap computation with communication. Hence, the technique is integral to achieving
high performance.

In this example, mtx is an inout shared variable which means that at any given time, an
SPE can be fetching data for it, performing computations on it, and sending results back to
main memory. Cellgen maintains three buffers for each of these states. In the code below,
the variables prev and mtx_nxt are used to keep track of buffer state:

1 #define INOUT 3
2 doublt16b_t (∗mtx_buf)[buf_sz] = malloc_align(sizeof(doublt16b_t) ∗ buf_sz ∗ INOUT);
3 double16b_t∗ mtx;
4 dma_list mtx_lst[INOUT];
5 int prev, mtx_nxt = 0;
6 void∗ adr;
7 int stride;
8
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9 int i, j, k;
10 for (i = spe_start; i < spe_stop; i++) {
11 for (j = 0; j < N3; j++) {
12 adr = mtx_adr + ((i ∗ N2) ∗ N3 + j);
13 stride = N3 ∗ sizeof(double16b_t);
14 mtx_lst[mtx_nxt] = construct_dma_list(adr, buf_sz, stride);
15 dma_list_in(&mtx_buf[mtx_nxt], mtx_lst[mtx_nxt], adr);
16
17 for (k = 0; k < N2; k += buf_sz) {
18 prev = mtx_nxt;
19 mtx_nxt = (mtx_nxt + 1) % INOUT;
20
21 dma_wait(mtx_nxt);
22
23 adr = mtx_adr + ((i ∗ N2 + (k + buf_sz)) ∗ N3 + j);
24 mtx_lst[mtx_nxt] = construct_dma_list(adr, buf_sz, stride);
25 dma_list_in(&mtx_buf[mtx_nxt], mtx_lst[mtx_nxt], adr);
26
27 dma_wait(prev);
28 mtx = &mtx_buf[prev];
29
30 unsigned int __k = 0;
31 for (__k = 0; __k < buf_sz; __k++) {
32 mtx[__k].num = mtx[__k].num ∗ factor;
33 }
34
35 adr = mtx_adr + ((i ∗ N2 + k) ∗ N3 + j);
36 dma_list_out(mtx, mtx_lst[prev], adr);
37 }
38 }
39 }

Before the inner-most loop, lines 12–15 perform the first data fetch for the shared variable.
This transfer cannot be overlapped with computation. Once inside the inner-most loop, we
must first save the old buffer state value (line 18), then determine which buffer is next (line
19). The wait on line 21 ensures that before we continue, the last sending of results has
completed. We must do this because lines 23–25 will overwrite those locations in the local
store with data from main memory for the next iteration. The wait on line 27 ensures that all
of the data for this iteration has finished transferring, and lines 30–33 perform this iteration’s
computation. Finally, lines 35–36 write the results from this iteration’s computation back
to main memory. Both of the calls to dma_wait() (lines 21 and 27) will block if the data
transfer associated with that tag has not yet completed.
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3.5 Remainders

All of the previously presented strip-mined examples have an implicit assumption: that the
amount of data in the inner-most loop is a multiple of the buffer size. This assumption will
not hold in the general case, so Cellgen must handle leftover data. The following code is a
complete transformation of the original Cellgen example:

1 #define INOUT 3
2 doublt16b_t (∗mtx_buf)[buf_sz] = malloc_align(sizeof(doublt16b_t) ∗ buf_sz ∗ INOUT);
3 double16b_t∗ mtx;
4 dma_list mtx_lst[INOUT];
5 int prev, mtx_nxt = 0;
6 void∗ adr;
7 int stride;
8
9 int i, j, k;

10 for (i = spe_start; i < spe_stop; i++) {
11 for (j = 0; j < N3; j++) {
12 adr = mtx_adr + ((i ∗ N2) ∗ N3 + j);
13 stride = N3 ∗ sizeof(double16b_t);
14 mtx_lst[mtx_nxt] = construct_dma_list(adr, buf_sz, stride);
15 dma_list_in(&mtx_buf[mtx_nxt], mtx_lst[mtx_nxt], adr);
16
17 int mtx_rem = N2 % buf_sz;
18 int mtx_ful = N2 − mtx_rem;
19
20 for (k = 0; k < mtx_ful; k += buf_sz) {
21 prev = mtx_nxt;
22 mtx_nxt = (mtx_nxt + 1) % INOUT;
23
24 dma_wait(mtx_nxt);
25
26 adr = mtx_adr + ((i ∗ N2 + (k + buf_sz)) ∗ N3 + j);
27 mtx_lst[mtx_nxt] = construct_dma_list(adr, buf_sz, stride);
28 dma_list_in(&mtx_buf[mtx_nxt], mtx_lst[mtx_nxt], adr);
29
30 dma_wait(prev);
31 mtx = &mtx_buf[prev];
32
33 unsigned int __k = 0;
34 for (__k = 0; __k < buf_sz; __k++) {
35 mtx[__k].num = mtx[__k].num ∗ factor;
36 }
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37
38 adr = mtx_adr + ((i ∗ N2 + k) ∗ N3 + j);
39 dma_list_out(mtx, mtx_lst[prev], adr);
40 }
41
42 if (mtx_rem) {
43 dma_wait(mtx_nxt);
44 mtx = &mtx_buf[mtx_nxt];
45
46 unsigned int __k = 0;
47 for (__k = 0; __k < mtx_rem; __k++) {
48 mtx[__k].num = mtx[__k].num ∗ factor;
49 }
50
51 adr = mtx_adr + ((i ∗ N2 + mtx_ful) ∗ N3 + j);
52 dma_list_out(mtx, mtx_lst[mtx_nxt], adr);
53
54 dma_wait(mtx_nxt);
55 }
56 }
57 }

On lines 17 and 18, we use the original bounds of the inner-most loop and the buffer size
to determine both how many full iterations there are, and how many elements, if any, are
leftover. The stopping condition on line 20 uses the number of full iterations. The remainders
are handled starting on line 42. First, we must wait for the last chunk of data to complete
transferring, which is done on line 43. The final computation, over just the remaining data,
occurs on lines 46–49. Finally, the remainder results are transferred back to main memory
on lines 51 and 52.

3.6 Scheduling

Cellgen distributes the outermost loop iterations to the SPEs to run in parallel. Currently,
we have implemented only static scheduling, which attempts to distribute the iterations to
SPEs as evenly as possible to avoid imbalances. Each SPE calls compute_bounds to determine
its place in the overall computation:

void bounds_assign(int∗ start, int∗ stop, const int cutoff_id,
const int bytes16, const int base_chunks, const int leftover)

{
∗start = ∗start + (spe_id ∗ base_chunks ∗ bytes16);
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if (spe_id > cutoff_id) {
∗start += bytes16 ∗ (spe_id − cutoff_id));

}

if (spe_id >= cutoff_id) {
∗stop = ∗start + ((base_chunks + 1) ∗ bytes16 + leftover);

}
else {
∗stop = ∗start + (base_chunks ∗ bytes16 + leftover);

}
}

void compute_bounds(int ∗start, int ∗stop, size_t element_sz)
{
const int bytes16 = 16 / element_sz;
const int total_chunks = (∗stop − ∗start) / bytes16;
const int base_chunks = total_chunks / spe_threads;
const int thread_bytes_rem = ((∗stop − ∗start) % (bytes16 ∗ spe_threads));
const int leftover = thread_bytes_rem % bytes16;
const int cutoff_id = spe_threads − (thread_bytes_rem / bytes16);

if (spe_id == spe_threads − 1) {
bounds_assign(start, stop, cutoff_id, bytes16, base_chunks, leftover);

}
else {
bounds_assign(start, stop, cutoff_id, bytes16, base_chunks, 0);

}
}

Each SPE is sent the original starting and stopping conditions of the loop. That information,
as well as the size of the smallest data type its accelerated region operates on, are passed
to compute_bounds. First, it determines how many of the elements are contained in 16-bytes
(bytes16, line 20), and it uses that value to determine how many 16-byte chunks are contained
in the entire iteration space (thread_chunks, line 21). The total number of active SPEs is
always kept in spe_threads, which is used to determine the base number of iterations each SPE
should receive (base_chunks, line 22). Next, it needs to determine the remaining iterations
that it could not evenly distribute among the SPEs, and must be added to the last SPE
(leftover, line 24). This adjustment causes a further adjustment to the starting condition of
other SPEs with an ID higher than cutoff_id.

This is perhaps a surprising amount of computations to perform a fundamentally simple
task: evenly divide the iteration space. But these computations must be performed because
an SPE with too many iterations will cause a work imbalance and lengthen the runtime of
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#pragma cell shared(double∗ in = in[N][N], \
double∗ out = out[N][N])

{
int i, j, k;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
out[i][j] = in[i][j−1] + in[i][j] + in[i][j+1];

}
}

}

i

j

Figure 3.1: Code and diagram for on-induction stencil access. We call this code such because j is
the fastest-changing induction variable and the stencil access is relative to it. The darkly shaded
blocks of the diagram mark the (i, j) iterations that are a part of the buffer. The lightly shaded
blocks are the extra elements that need to be fetched because of the stencil accesses at the edge of
the buffer’s iteration space.

the entire offloaded region. However, we cannot simply divide the iteration space evenly
among all SPEs. Each iteration is implicitly also an address in main memory; dividing the
iteration space up without respecting the size of the data types could result in a misaligned
DMA, which causes a bus error.

3.7 Stencil Analysis

The final transformation is to accommodate stencil accesses for in variables. Cellgen supports
1- and 2-dimensional stencil accesses, which we refer to as on-induction and off-induction
accesses for reasons we will explain in this section. The purpose of our stencil optimizations
are to reduce the number of DMAs required for a computational kernel by intelligently
reusing data that is already in the SPE’s local store.

3.7.1 On-induction Stencil Access

Figure 3.1 presents a code example for on-induction stencil access and an accompanying
diagram which shows how Cellgen handles the access. Stencil accesses that are on the same
dimension as the fastest changing induction variable—the induction variable that controls
the inner-most loop—are comparatively easier to handle than off-induction accesses.

Cellgen analyzes each shared-array access and keeps track of three quantities for each shared
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#pragma cell shared(double∗ in = in[N][N], \
double∗ out = out[N][N])

{
int i, j, k;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
out[i][j] = in[i−1][j−1] + in[i+1][j] +

in[i+2][j+1];
}

}
}

i

j

Figure 3.2: Code and diagram for on- and off-induction stencil access. In this case, j is the fastest-
changing induction variable, but there are also stencil accesses relative to i. Note that the iteration
space has been transformed. The duplicate, medium-shaded blocks represent both past and future
iterations in the i dimension.

variable: the lowest stencil access, the highest stencil access, and the spread, which is the
absolute value of the highest minus the lowest access. For example, in Figure 3.1, the lowest
access is −1, the highest access is 1, and the spread is |1− (−1)| = 2. All of these values are
used to calculate how much extra data to fetch for each buffer, and the relevant addresses
in main memory of that data.

As shown in the diagram for Figure 3.1, Cellgen is able to handle on-induction stencil ac-
cesses by fetching more data at the beginning of a buffer (to accommodate the lowest stencil
accesses by the first iterations in the buffer), and more data at the end of the buffer (to
accommodate the highest stencil accesses by the last iterations in the buffer). Cellgen ac-
complishes this stencil support without making changes to the structure of the code; rather,
it makes adjustments to the amount of data transferred based on the analysis of the shared
variable’s stencil accesses.

3.7.2 Off-induction Stencil Access

We define off-induction stencil accesses to be stencil accesses that do not use the fastest-
changing (lexically closest) induction variable. Figure 3.2 adds off-induction stencil accesses
to the code from Figure 3.1. The key insight to efficiently handling stencil accesses is to
reuse data that is already in the SPE’s local store. For on-induction accesses, this reuse is
simply a matter of fetching a little more data for each DMA (of course, exactly what data
to fetch is important and was covered in the previous section).
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However, for off-induction stencil accesses, the reuse must occur at the level of an entire
buffer. This fact implies two requirements: Cellgen must have a scheme for handling a
rotating system of buffers beyond what is already needed for multibuffering, and the iteration
space must be transformed such that such a rotating system of buffer reuse is possible.

Cellgen still has to keep track of buffers used for the current computation and buffers to
prefetch data for the next computation. However, for off-induction stencil accesses, the
number of buffers for the current computation is equal to the spread of the off-induction
variable. Cellgen determines the spread at compile time in the same way it does so for
on-induction stencil accesses. This rotating systems of buffers allows the same data to step
through each of the roles as the computation advances. For example, consider the code in
Figure 3.2. When the outer loop is on iteration i, the inner loop requires data from rows
i− 1, i+ 1 and i+ 2. Let us assume that i is safely in the middle of the iteration space, but
we have not yet started its computation. This assumption implies that the data for rows
i− 1, i+ 1 and i are already in the SPE’s local store. (While data from row i is not needed
to compute any values at iteration i, we needed the data in a previous iteration and we will
need it again.) The only data that is not already in the SPE’s local store is that for row
i+ 2, and that is the only data that we need to fetch for this iteration.

Once iteration i is complete, Cellgen still needs the data fetched for row i+2. Cellgen rotates
the data from row i+2 into the position that the data from row i+1 previously occupied, it
rotates the data from row i+ 1 into the position that row i previously occupied, on down to
the lowest row, which Cellgen drops because it is no longer needed. The rotations are cheap:
they only require computing a local address and assigning it to a pointer. Cellgen generates
the exact rotations needed at compile time, based on the accesses seen in the code.

This system of rotating buffers ensures that for all of the non-border iterations, only a single
DMA is needed, just as in the non-stencil case. Once we add one more buffer, we can
prefetch part of a row for a future iteration while working on the current iteration. Double
and triple buffering as described in Section 3.1 becomes N buffering where N is the spread
of the off-induction variable.

In order for this scheme to work, Cellgen must ensure that each successive iteration in the
inner loop operates on a new row. If the iteration space as provided by the user does not
follow this pattern, Cellgen transforms the iteration space so that it does. If Cellgen did not
perform this transformation, then the system of buffers would contain data from the same
row as the current iteration—which does not help when the induction access is across rows.

As an illustration of this transformation, consider the code and iteration space in Figure 3.1.
In this code, j is the fastest changing induction variable, and as a result, the direction of the
computation in the diagram proceeds in the j dimension. In Figure 3.2, j is still the fastest
changing induction variable. However, Cellgen transforms the iteration space, as shown in
the diagram. In Figure 3.1, each SPE operates on a set of rows, while in Figure 3.2, each
SPE operates on a set of columns.
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Finally, as implied by Figure 3.1, on- and off-induction stencil accesses can work in con-
junction with each other. The transformations they require are independent of each other.
Currently, Cellgen can only handle stencil accesses in two-dimensions. Generalizing this
scheme to work with an arbitrary number of dimensions is future work.

3.8 Buffer Size

Obtaining high performance on Cell requires overlapping computation and communication
so that communication latency is hidden. This is the purpose of multibuffering, and the
reason why Cellgen determines which kind to use. In order to hide latency, the computa-
tion and communication must take the same amount of time. If computation is too short
compared to communication, SPEs will waste time waiting on DMAs. The computation
and communication time are determined by the buffer size: the larger the buffer size, the
longer each DMA will take, but there’s also more computation to do while waiting. Conse-
quently, Cellgen’s strategy is to pick the largest buffer size that ensures at least some of the
computations will be overlapped.

Cellgen sets the buffer size as:

B = min
(
Nb

d+ 1 , 16384
)

(3.1)

where Nb is the number of bytes needed for a variable in the nearest loop, d is the depth
of the buffer (either 2 or 3 for double or triple buffering), and 16384 bytes is the maximum
amount of data that the Cell can transfer in one DMA. The actual buffer size decision is
made at runtime by Cellgen’s generated code.

The rationale behind Equation 3.1 is that, as our experiments in Chapter 4 show, the
crossover point where DMA latency is hidden by computation happens early, with rela-
tively small buffer sizes. After this point, as the buffer size increases, so does the amount
of work the SPE can do between transfers, keeping performance constant. However, naively
choosing the largest possible buffer size for sizes of Nb less than the maximum possible DMA
transfer size eliminates the possibility of computation and communication overlap. Dividing
Nb by d+ 1, one more than the buffer depth, ensures that the shared variable is in as many
states as possible. The quantity d+ 1 is used instead of just d because there always must be
an initial, priming DMA before DMA transfers and SPE computation overlap.

Equation 3.1 represents an upper bound on the buffer size. We err on the side of making the
buffers too large because our experience shows us that buffers that are too small are more
likely to cause a performance problem.

We consider the application of Equation 3.1 dynamic buffer selection because buffer choice is
determined at runtime by Nb. Users also have the option to provide a static buffer selection,
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which will override the dynamic option.

3.9 Performance Prediction

Cellgen provides a prediction of how long an accelerated region will take to complete. We
plan to use this prediction in the future to make scheduling decisions, particularly how the
PPE should behave after an offload. In this dissertation, we only present the prediction and
evaluate its accuracy. In future work we plan to apply this prediction scheme to dynamic
scheduling of computation and data transfers. Our prediction scheme is based on both a
static analysis of the code and runtime information. The prediction is provided in the form:

Toffload = max(TDMA, Tcomp) (3.2)

Where TDMA is the estimated time spent on DMAs and Tcomp is the estimated time spent on
computation. Both TDMA and Tcomp depend on Nb, the total amount of bytes transferred,
and NSPE, the total number of SPEs used. These values are known only at runtime. This
model assumes that communication and computation are overlapped as much as possible,
which is why the total time for an offload is whichever time dominated.

3.9.1 Data Transfer Model Derivation

We estimate the time spent on data transfers using:

TDMA = S + L(Nb)
NSPE

(3.3)

In this case, S is the startup cost of a DMA, which includes the cycles needed by the MFC
to prepare the transfer, and the overhead of the code generated by Cellgen. We measure S
to be 128 cycles. L(Nb) is a linear model for the cycle cost of the total amount of bytes to
be transferred. We derive a linear model of data transfer latency as:

L(Nb) =


349.70 + 0.13Nb if 16 ≤ Nb ≤ 2k,
472.76 + 0.16Nb if 2k < Nb ≤ 4k,
306.45 + 0.21Nb if 4k < Nb < 16k

(3.4)

We derived L(Nb) through an experiment which measures DMA latency as we varied the
transfer size by 128 bytes. The benchmark uses a single SPE, and performs 1 million DMA
get operations of the specified size. We vary the transfer size with a granularity of 128 bytes
because that is the size of a cache line and the minimum data transfer unit on the Cell ring
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Figure 3.3: DMA latency as a function of transfer size.

network. The data points labeled “measured time” in Figure 3.3 are average cycle counts
from each of these runs. We recognize that these cycle counts will skew slightly higher
because they include the cost of measuring.

The measured latency is clearly divided in three segments: 128 bytes to 2048 bytes, greater
than 2048 bytes to 4096 bytes, and everything greater than 4096 bytes. Because of this
clear division, which reflects overhead for loading the SPE translation table, we performed
a separate linear regression for each section, which gives us Equation 3.4. This equation is
plotted on Figure 3.3 as “model L(Nb).”

From this same experiment we also determined the startup cost of a DMA as 128 cycles.
The MFC itself only takes 16 cycles to issue a DMA, but we are also measuring the address
calculation, the function call cost to our own library, and the code executed in the function
before issuing the DMA instruction to the MFC.

This model ignores several aspects of Cell. It assumes that all data is transferred at once,
without any buffering. It also ignores effects such as interference from other SPEs, the
costs associated with accessing the memory module itself, and models all DMAs as the more
expensive DMA get. However, we have purposely used a simplified model that is similar to
how Cellgen generates code, and is inexpensive to compute at runtime for each accelerated
region.
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Table 3.1: Cycle counts used to estimate the cost of a computation.

+ - * / % load store
char 2 2 7 7 7 2 6
int 2 2 7 7 7 6 6

float 6 6 6 6 6 6 6
double 13 13 13 13 13 6 6

3.9.2 Computation Model Derivation

Cellgen determines the value for Tcomp for each accelerated region through static code anal-
ysis. This model assumes that the computational kernel in an offloaded region is a basic
block: no branches, including function calls.

Since the contents of the local storage are controlled by software, statically determining the
runtime cost of a block of code is significantly easier than on a conventional architecture.
Unlike on a conventional architecture, there is no concept of a cache miss. The model in
the previous section already accounts for data transfer costs, and the overall model assumes
that computation and communication are overlapped. Consequently, we should be able to
estimate the cost of an iteration by analyzing the specific operations and their types in an
iteration. The estimate is defined as:

Tcomp = Nb max(T0, T1)
zNSPE

(3.5)

Where T0 is the amount of time spent on pipeline 0, T1 is the amount of time spent on
pipeline 1, and z is the size of an element in bytes. The SPEs have a dual issue pipeline. All
loads and stores are issued on pipeline 0, and all computation is issued on pipeline 1. Since
the SPEs execute instructions on the two pipelines in parallel, we take the maximum of the
two cycle counts, not the addition.

During reference and access analysis, Cellgen keeps track of the number and kinds of opera-
tions it encounters, as well as the types involved. It is also aware of common optimizations.
For example, a multiplication followed by an addition will use a single multiply-and-add
instruction instead of two separate instructions. The process of reference and access analysis
generates code transformations that will add some overhead. Once analysis is complete,
Cellgen also counts operations in its own generated code and factors them into the model as
part of the cost of an iteration, or as part of the startup cost of a DMA.

The cycle counts Cellgen uses are presented in Table 3.1, which come from The Cell Pro-
gramming Handbook [53]. When Cellgen encounters any of these operations, it determines
the type of the expression using the declared type of the variables in use, and through type
inference of subexpressions using C’s type promotion rules.
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3.10 Summary

In this chapter we presented the code transformations that Cellgen applies to a programmer’s
high-level code in order for it to execute in parallel on multiple SPEs. Such transformations
are necessary for implementing a shared memory abstraction for any heterogeneous pro-
cessor which has cores divorced from the main memory hierarchy. However, some of the
transformations can be adapted for cores that have a hardware controlled cache, but allow
for software prefetching hints. Buffer management would no longer be necessary, but the
same schedule for fetching data from main memory overlapped with computation could be
applied.

In the next chapter, we evaluate the performance of these transformations and runtime
decisions.



Chapter 4

Experimental Evaluation: Measuring
the Performance of Code
Transformations for Heterogeneous
Multicores

In this chapter we evaluate the prior claims that the transformations we apply to code that
assumes shared memory generates code that performs well on a heterogeneous multicore.
We also evaluate the individual components and features of Cellgen, such as dynamic buffer
sizing, modelling accuracy and stencil support.

Cellgen supports only memory access patterns for which we know how to generate high
performance code for. An alternative approach to supporting a shared memory abstraction
on a heterogeneous multicore with cores that have separate address spaces is to implement
a software cache. In a software cache, all shared variable references become requests into
a software controlled cache which fetches chunks of data from main memory on a demand
basis. All shared variable accesses must go through the software cache, which increases the
execution time even if the data is present in the cache. Such an approach also prevents
overlapping computation with communication; accesses must be known in advance in order
to do so. Using dense matrix and vector computations, we demonstrate the effectives of
recognizing access patterns at compile time, and generating high performance multibuffering
code instead of relying on a software cache.

Using two real applications, we also test the buffer size selection which is made at runtime,
and evaluate the accuracy of our performance prediction. Finally, we also evaluate the
effectiveness of our approach to handling stencil accesses in two different ways. The first
evaluation determines how much time is saved versus using a naive method which uses a
separate buffer for each access. The second evaluation compares the performance of code
generated by Cellgen using the techniques presented in the previous chapter against an
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Figure 4.1: Microbenchmarks comparing Cellgen and the OpenMP implementation in XLC, which
is a part of the Cell SDK.

application written by an expert programmer using the Cell SDK directly.

All of the experiments in this chapter use an experimental platform consisting of a Sony
PlayStation 3 running Fedora 7, using Linux kernel 2.6.24 and IBM’s Cell SDK 3.0. On a
PS3 running Linux, only 6 SPEs are available to the programmer.

4.1 Microbenchmarks

We evaluate Cellgen’s ability to scale as the number of SPEs increase with six data-parallel,
computational kernels. We also compare Cellgen’s performance with that of the implemen-
tation of OpenMP in IBM’s XLC C and C++ compiler, version 9.0. The design of this
implementation is described by Eichenberger et al. [32, 33]; it relies on a software cache with
limited support for direct buffering. Consequently, these experiments also demonstrate the
limitations of relying on a software cache for dense computations on the SPEs. The Direct
Block Data Buffer (DBDB) approach described by Liu et al. [72] is not a part of this version
of XLC. Cellgen and DBDB have similar approaches to supporting shared memory across
SPEs; see Section 7.1 for more discussion of their relationship.

Descriptions of the microbenchmarks:

Matrix Multiplication: Multiplies two 2-dimensional matrices of 512 × 512 double float-
ing point numbers. The matrices being multiplied are exclusively in values and their
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result is exclusively an out value.

3D Matrix Add: Adds two 3-dimensional matrices of 160 × 160 × 160 double floating
point numbers. As before, the matrices being added are exclusively in values and their
result is exclusively an out value.

Dot Product: Performs a dot product across two 64 MB vectors of doubles. The vectors
are input, and the result is a scalar reduction.

Jacobi: Similar to the implementation described in Section 4.6.2. Performs a Jacobi compu-
tation on two 2-dimensional matrices of 2048× 2048 doubles. Note that this benchmark
takes advantage of the stencil optimizations described in Section 3.7.

Streaming Aggregation: The same operation as described in Section 6.2.2 with source
code in Figure 6.5. Performs a parallel aggregation on integers in a table with 1500
groups and windows of size 2500.

2D Convolution: Performs a 2-dimensional convolution on an input matrix of 255 × 255
integers and an input matrix of 128 × 128, with a result of 128 × 128 integers. The
operation loops over every element of the result matrix, performing a convolution at
each result element using the input matrices. This algorithm is N4, where N is the
dimension of the result matrix.

As shown in Figure 4.1, Cellgen consistently scales as the number of SPEs increases. For
each microbenchmark, however, XLC’s performance decreases by a factor of 1.9–11.5 when
2 SPEs are used compared to just a single SPE. Using only one SPE is a special case for
the software cache used by XLC. When multiple SPEs are used, the caching system keeps
track of which bytes on a cache line have been written to support multiple writers across
the SPEs. When only one SPE is used, however, it does not need to keep track of byte-level
writes.

The Dot Product microbenchmark is unique in two ways: it is the only benchmark that has
a reduction on a scalar, and it has the largest performance gap at 6 SPEs between XLC and
Cellgen: Cellgen is over 31 times faster. We attribute this performance gap to the differences
in how the two systems handle the reduction. For XLC, the cache line containing the scalar
variable is likely bouncing between the SPEs. Cellgen, on the other hand, uses a local value
in each SPE to store the reduction for just the computations on that SPE, and does not
synchronize with the other SPEs until after all of them have finished.

For all of the microbenchmarks (except Dot Product), when using all 6 SPEs, Cellgen is
2–5.8 times faster than XLC’s implementation of OpenMP. From these results, we draw
the conclusion that naive software caches are at a serious performance disadvantage for
supporting a shared memory abstraction on the Cell. Researchers are attempting to overcome
these disadvantages by implementing smarter software caches. The work of Vujic et al. [95]
augments a standard software cache so that it differentiates between high and low locality



41

accesses. Access patterns that the compiler recognizes will have high locality can benefit
from prefetching, greatly increasing the likelihood of cache hits. Accesses that the compiler
determines are unlikely to result in cache hits, and is unable to prefetch for, go into a separate
cache with a lower miss overhead. The work of Chen et al. [25] attempts to improve the
hit rate of software caches by prefetching irregular references—memory accesses that are not
affine expressions of the loop induction variable. Inner loops are split into address collection
loops and computation loops. Address collection loops execute first, and they only execute
the code necessary to collect the addresses that the irregular accesses require. The runtime
system can then prefetch those addresses so they will be more likely to be in the cache during
the execution of the computation loop.

Such optimizations leverage the fact that the software cache can be completely controlled by
the compiler, unlike hardware caches. But the SPEs in the Cell were purposefully designed
to not have a hardware controlled cache so that they could have the potential for higher
performance. Die area that would have been consumed by the hardware cache could go
to the local store, register files and the interconnect bus. Implementing in software what
was decided against in hardware means the software caches will start with a considerable
performance disadvantage.

4.2 Applications

For evaluating Cellgen’s dynamic buffer size choice and its model accuracy, we use two
scientific applications that were hand-optimized for Cell using IBM’s SDK 3.0. We deliber-
ately chose real applications optimized for the Cell architecture so that we can have a solid
performance baseline to compare against. The two applications we use are PBPI [35] and
Fixedgrid [50, 71, 89].

PBPI is a parallel implementation of the Bayesian phylogenetic inference method [35], which
constructs phylogenetic trees from DNA or AA sequences using a Markov chain Monte Carlo
(MCMC) sampling method. On Cell, calculation of the likelihood values of each generation
is distributed among SPEs.

For our experiments, we used a data set of 107 taxa with 9,994 nucleotides for a tree. There
are three computational loops that are called for a total of 13,006 times and account for the
majority of the execution time of the program. The first loop accounts for 84% of the calls,
and requires 624 KB to compute a result of 312 KB; the second loop accounts for 8% of the
calls and requires 936 KB to compute a result of 624 KB; and the third also accounts for 8%
of the calls and requires 354 KB to compute a result of 8 bytes.

Fixedgrid is an atmospheric modeling application. It describes chemical transport via a third
order upwind-biased advection discretization and second order diffusion discretization [71].
To calculate mass flux on a two-dimensional domain, a two-component wind vector, hori-
zontal diffusion tensor, and concentrations for every species of interest must be calculated.
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Figure 4.2: Buffer size evaluation for PBPI (left) and Fixedgrid (right). Cellgen static buffer
represents performance when a static size is used, Cellgen dynamic buffer represents performance
when Cellgen determines the best buffer size at runtime, and SDK 3 represents the performance of
the original, hand-optimized version of the application.

To calculate ozone concentrations on a 600× 600 domain, approximately 1,080,000 double-
precision values (8.24 MB) are calculated at each time step and 25,920,000 double precision
values (24.7 MB) are used in the calculation. These calculations access non-contiguous data,
which requires using DMA lists for best performance. Fixedgrid performs the discretization
on both the rows and columns of the two-dimensional domain.

Both applications were modified to use non-vectorized kernels. We want to focus on the
performance differences that arise from Cellgen’s strategies for scheduling data transfers and
those available to an expert programmer.

4.3 Dynamic Buffer Size Selection

To evaluate Cellgen’s choice for dynamic buffer size (Equation 3.1 in Section 3.8), we compare
the dynamic choice against static buffer sizes with a granularity of 256 bytes, as shown in
Figure 4.2. We use versions of PBPI and Fixedgrid implemented with Cellgen; the static
version uses the specified buffer size, and the dynamic version uses Equation 3.1. As a
performance baseline, we also compare against the original, hand-optimized version of each
application implemented with IBM’s SDK 3.0.

The crossover point where computation and communication are overlapped happens rela-
tively early for both PBPI and Fixedgrid—for PBPI this happens at 512 bytes, and at 768
bytes for Fixedgrid. For PBPI, Cellgen chooses buffer sizes of 16 KB, the maximum transfer
size. The size of each loop is 9994 doubles, so from Equation 3.1, Nb = 79952 bytes. Since
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Figure 4.3: SPE timing breakdown for PBPI (left) and Fixedgrid (right). Each bar represents the
average of 10 runs, and is labeled with its implementation (C for Cellgen and S for SDK 3.0) and
the number of SPEs used. Others accounts for signaling overhead between the PPE and SPE, and
all overheads related to issuing a DMA (except for PBPI where DMA preparation cost is listed
separately).

the loop only has strict in or out variables, d = 2, which makes the calculated buffer size
26650 bytes. Since the ideal transfer size is greater than the maximum amount of data that
can be transferred in a single DMA, Cellgen chooses the maximum DMA size of 16 KB.

The data set size for each Fixedgrid loop is 600 padded doubles. We pad each double
to 16 bytes to achieve correct data alignment. Hence, each Fixedgrid inner loop requires
transferring Nb = 3200 bytes. Cellgen classifies each variable as strict in or out, so d = 2 and
the calculated buffer size is 3200 bytes. This size is less than the maximum transfer size, so
it is used at runtime.

4.4 Application Performance

Figure 4.2 shows total application performance of the Cellgen implementation of PBPI comes
within 9% of the hand-optimized version. Detailed timings from the SPE portions of the code
are shown in Figure 4.3. This data shows Cellgen is able to generate code that can overlap
communication and computation similarly to what an expert programmer can achieve, with
communication overhead as low as 12% longer than the communication overhead of expertly
tuned code.

As shown in Figure 4.3, both the Cellgen and hand-optimized version of Fixedgrid have
negligible communications costs for the row discretization kernel—never more than 0.35% of
the total SPE execution time. Cellgen’s column discretization, however, has communication
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Figure 4.4: Model accuracy evaluation for PBPI (left) and Fixedgrid (right). We present the
measured and predicted cost for each accelerated region.

time that is 48 times longer, which accounts for Cellgen’s total application performance
coming within 23% of the hand-optimized version. The memory latency in Cellgen’s column
discretization kernel is not overlapped with computation. The Cellgen version is written
such that all of the data for a row or column is copied by the programmer into a local buffer.
This buffer is different from the buffers Cellgen generates. Having the entire row or column
is necessary because iterations of the computations are not strictly independent; there are
loop carried dependencies spanning 3 consecutive loop iterations. Cellgen is not able to
natively handle such circumstances in the current implementation. When computing rows,
the amount of time spent copying the data is not large compared to the computation. When
computing columns, the amount of time spent copying the data is significant—it accounts
for 20% of SPE execution time.

4.5 Model Accuracy

We present the results from the experiments comparing Cellgen’s model prediction against
the actual measurements for each accelerated region in Figure 4.4.

For all three accelerated regions in PBPI, Cellgen correctly predicts that the regions will be
computation dominated as opposed to communication dominated. Cellgen further predicts
correctly that actual computation on pipeline 1, as opposed to loads and stores on pipeline
0, will dominate. For region 1, Cellgen is off by 5.8% with one SPE, and 9.2% for all six
SPEs. For region 2, Cellgen is off by 4.8% with one SPE, and 8.5% for all six SPEs. For
these regions, Cellgen under-predicts because the cycle cost estimate only considers the main
computation involved, and ignores the cost of starting up the computation.
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For region 3, Cellgen is off by a factor of 8.3 for one SPE and 8.4 for all six SPEs. The
problem with region 3 is that the computation is dominated by a call to a shared library
logarithm function. Cellgen only recognizes the computations presented in Table 3.1. While,
in principle, the cost of a logarithm function will depend on those operations, the function
call itself is a black box. This misprediction highlights one of the limitations of the approach
we have taken to performance prediction with Cellgen: we assume the actual computations
that dominate the cost of an SPE region will appear in the accelerated region. When this
assumption does not hold, as in region 3, Cellgen’s model is not accurate.

The two accelerated regions in Fixedgrid perform the same computations; they differ only
in how they access data. Hence, the model predictions for both region 1 and region 2 for
Fixedgrid are the same. Cellgen’s prediction for region 1, which performs row accesses,
maintains a misprediction error of 14% for all number of SPEs. However, for region 2,
the misprediction error is between 34–36%. The problem with region 2 is that it accesses
memory in columns, and the model for DMA transfers (Equations 3.3 and 3.4 in Section 3.9)
assumes single DMA transfers. Transferring column data is more expensive because Cellgen
must generate the DMA lists themselves, and transferring N bytes of data in a single DMA is
going to be less expensive than transferring N bytes of data split up in many different chunks,
as is done with DMA lists. The solution is that we need to generalize our model to include
strided access to memory that requires the generation of DMA lists. The generalization of
the model should include the cost to generate and to schedule DMA lists. Cellgen already
knows at compile time if a transfer will require DMA lists, so we can easily extend the
compiler itself to handle the extended model.

4.6 Stencil Benchmarks

In order to test the efficiency of the stencil access techniques presented in Section 3.7, we
present experimental results that test these techniques against naive code generation and an
expertly-tuned application.

4.6.1 Transfer Savings

Figure 4.5 presents the results of an experiment which compares the performance of the
code generated for stencil accesses (labeled stencil in the figures) against the performance
of performing a DMA transfer for each separate access (labeled naive in the figures). There
are two implementations: one which sums up the cardinal neighbors of each element in
a matrix (labeled with 4 in the figures) and one which sums up the cardinal and ordinal
neighbors of each location (labeled with 8 in the figures). We use square matrices of sizes
64×64, 128×128, 1024×1024 and 2048×2048 integers. Matrices of size 64×64 are at the
edge of where it is beneficial to offload the computation to the SPEs, and matrices of size
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Figure 4.5: Benchmarks comparing the performance of Cellgen’s rotating system of buffers (stencil)
with code that performs a transfer for every access (naive.). There are two variants: accessing every
cardinal neighbor (labeled as 4) and accessing every cardinal and ordinal neighbor (labeled as 8).
Each graph represents experiments with a square matrix whose dimension is in the title. The line
labeled ppe in each graph represents how long it took to perform the computation on the PPE.

2048×2048 are at the edge of the amount of data than effectively be kept in a PS3’s main
memory.

The experiments in Figure 4.5 show the time saved by using the rotating system of buffers
versus using separate transfers for each stencil access. Using all six available SPEs, the system
of rotating buffers performs up to 2 times faster when accessing the cardinal neighbors and
up to 3 times faster when accessing the cardinal and ordinal neighbors. Cellgen’s stencil code
also performs nearly the same with both the cardinal-only and cardinal-ordinal versions. This
performance similarity exists because both versions execute the same number of transfers,
just with one extra element at the beginning and one extra element at the end of each buffer.
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Figure 4.6: Performance of Cellgen and SDK implementations of the Jacobi computation. The
SDK implementation has both vector versions (labeled sdk) and non-vectorized versions (labeled
sdknov). The SDK versions are also varied by the buffer size used in each transfer, 512 bytes or
4096 bytes. The line ppe represents the time taken to perform the computation on the PPE.

4.6.2 Jacobi

We compare a Cellgen version of the Jacobi computation to an expertly-tuned version imple-
mented with the Cell SDK. Both implementations compute the average of four floating point
numbers in the cardinal directions to each element in a matrix. We present results for the
SDK implementation with and without vectorization (labeled sdk and sdknov respectively).
Cellgen does not perform automatic vectorization and we want to focus on the data transfer
strategies. The SDK implementation also takes the amount of data to be in each DMA
transfer as a parameter; our experiments used 512 bytes and 4096 bytes.

Vectorization makes a significant performance difference for the SDK version, and the differ-
ence increases along with the size of the matrix. For the largest matrix, the vectorized code
is almost 4 times faster than the unvectorized code—which is expected, since the SPEs can
operate on 4 floats in a single vector instruction. The smaller matrix sizes benefit from vec-
torization, but speedups around a factor of 2 reflect that the ratio of vectorized instructions
to other overheads decreases. Varying the buffer size in the SDK version from 512 to 4096
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Figure 4.7: Matrix division strategies for Cellgen (left) and the SDK implementation of the Jacobi
computation (right). The label spe divisions indicates how the data is divided among the SPEs
(vertically for Cellgen and horizontally for the SDK version). The label buffer divisions indicates
how the data is split into buffers for each SPE (vertically for both implementations).

improves performance by about 20%, which implies that larger DMA transfers are better.

We want to focus on the data transfer strategies when comparing the performance of the
SDK version to the Cellgen implementation. Hence, we will focus on how the Cellgen version
compares to the non-vectorized SDK versions.

There are two major differences between Cellgen’s data transfers and the SDK version. The
first difference is that each floating point number in the Cellgen implementation is padded
to 16 bytes. Cellgen requires this padding so that it can perform arbitrary data transfers
among all elements. The second difference is presented in Figure 4.7, which are the different
data division strategies. Cellgen’s strategy is to first divide the matrix vertically among all
of the SPEs, and then further divide the vertical SPE slices into buffer-sized slices as needed.
In contrast, the SDK version first divides the matrix horizontally among the SPEs, and then
divides the horizontal slices vertically into buffer-sized slices. As the size of the matrices
increases, these two strategies will converge in terms of total number of DMAs. However, for
the sizes used in our experiments, the strategy used by the SDK implementation is better: it
performs up to 10 times fewer total DMAs. The reason for this discrepancy is that as more
SPEs are used, Cellgen’s strategy does not decrease the number of DMAs required by each
SPE. If the matrix is N × N , each SPE will have at least N DMA transfers (although the
total data actually transferred will change). The SDK implementation’s strategy decreases
the number of DMAs as SPEs are added. This behavior explains why the performance for
Cellgen flattens out at higher than 4 SPEs, while the SDK implementation sees continued
improvement. In the future, we plan to integrate the strategy the SDK implementation uses
into Cellgen.

The final performance anomaly with Cellgen’s Jacobi results is the “bump” seen at 3 SPEs
for matrices of 128×128 and 256×256. The cause of this bump is due to the fact that when
2 and 3 SPEs are used, the data division results in a remainder; there were many DMAs of
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small amounts of data. For 4 SPEs and up, the data division is even; it has no remainder.

4.7 Summary

While programming with Cellgen is similar to programming with OpenMP, it is not exactly
the same for key reasons. Our approach to supporting a shared memory abstraction is
to only accept memory access patterns that we can generate high performance code for.
Not supporting all access patterns is in contrast to the software cache approach. Cores in a
processor are typically connected to main memory through a hardware controlled cache. The
vector cores on the Cell are not connected to main memory in the conventional way; there
is no hardware controlled cache, only DMAs. The software cache approach to supporting
a shared memory abstraction replaces all accesses to shared data with calls into a software
cache that exists on all vector cores. While this approach does support all memory access
patterns, it does so to the detriment of performance, as we demonstrated in Section 4.1.
These results should generalize to any heterogeneous multicore architecture where at least
some of the cores are not a part of the normal memory hierarchy.



Chapter 5

Programming Models: An Evaluation
of Different Programming
Abstractions for Heterogeneous
Multicores with Explicitly Managed
Memories

Cellgen represents an implicit programming model for data parallelism. In this chapter we ex-
plore other means for programming processors with explicitly managed memory hierarchies,
both qualitatively and quantitatively. Specifically, we compare Cellgen with Sequoia [34]
and the Cell SDK [52]. Sequoia’s goal is to abstract the memory hierarchy into levels, and
programmer’s explicitly state the data division and computation that happens at each level.
The Cell SDK is a thin wrapper over the features provided by the hardware. Table 5.1 shows
the design space we explore.

Table 5.1: Programming model exploration space.

Programming model Task creation Granularity Locality Scheduling data transfers
Cellgen implicit implicit implicit implicit
Sequoia explicit explicit explicit implicit
Cell SDK 3.0 explicit explicit explicit explicit

5.1 Cellgen

In prior chapters, we explained how to program with Cellgen, and how the compiler trans-
forms high-level code into Cell code. We build on this presentation by presenting Cellgen

50
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code taken from PBPI [35]:

int N4 = N/4;
#pragma cell private(int N4 = N4, double∗ freq = model−>daStateFreqs) \

shared(double∗ sroot = tree−>root−>siteLike, int∗ weight = g_ds.compressedWeight.v) \
reduction(+: double l = lnL)

{
int i;
for (i = 0; i < N4; i++) {
double temp;
temp = sroot[(i∗4)]∗freq[0] + sroot[(i∗4)+1]∗freq[1] +

sroot[(i∗4)+2]∗freq[2] + sroot[(i∗4)+3]∗freq[3];
temp = log(temp);
l += weight[i] ∗ temp;

}
}

This code is part of the maximum likelihood calculation. It shows several Cellgen features
used in a real application—shared variables, private variables, implicit reference analysis and
reductions. We will compare this code to the Sequoia version.

5.2 Sequoia

The second class of programming models that we consider in this study expresses parallelism
through explicit task and data subdivision. We use Sequoia [34] as a representative of these
models. In Sequoia, the programmer constructs trees of dependent tasks where the inner
tasks call tasks further down the tree; the real computation typically occurs in the leaves. At
each level, the data is decomposed and copied to the child tasks as specified, which enforces
the model that each task has a private address space. The following Sequoia code performs
the same computation as the Cellgen code from the previous section:

void task<inner> Likelihood::Inner(in double sroot[N],
in double freq[M], in int weight[P], out double lnL[L])

{
tunable T;
mapreduce (unsigned int i = 0 : (N+T−1)/T) {
Likelihood(sroot[i∗T;T], freq[0;3], weight[i∗T/4;T/4], reducearg<lnL, Sum>);

}
}
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void task<leaf> Sum::Leaf(in double A[L], inout double B[L])
{
B[0] += A[0];

}

void task<leaf> Likelihood::Leaf(in double sroot[N],
in double freq[M], in int weight[P], inout double lnL[L])

{
unsigned int i;
for (i = 0; i < P; i++) {
unsigned int j = 4 ∗ i;
double temp = sroot[j] ∗ freq[0] + sroot[j+1] ∗ freq[1] +

sroot[j+2] ∗ freq[2] + sroot[j+3] ∗ freq[3];
temp = log(temp);
lnL[0] += weight[i] ∗ temp;

}
}

Sequoia uses notation similar to C++ classes to represent computations. The appropriately
named member functions of that class are how the programmer describes what to do at
each level of the hierarchy. The computation itself is contained in the leaves, which in this
example is in Sum::Leaf and Likelihood::Leaf. The function Sum::Leaf specifies how to perform
the summation reduction. The function Likelihood::Leaf performs the actual computation on
the subset of the data passed into it. Both functions are tagged with task<leaf> to indicate
to the compiler that these are leaf tasks. All values passed into functions are also explicitly
labeled with in, out or inout.

The data division occurs in the function Likelihood::Inner, which is tagged as an inner node in
the tree with task<inner>. This division is expressed in Sequoia with the mapreduce iteration
construct. The implication from the map prefix is that the Likelihood computation will be
applied to all data subdivisions—mappar exists for computations that can occur in parallel
but have no reduction, and mapseq is for computations that must be sequential. The data
is divided in terms of the induction variable, i, and the tunable value T. In Sequoia, tunable
variables are used to generically express how data should be partitioned at each level. Sequoia
uses a hardware specification file to generate a suitable constant at compile time. Finally,
the reducearg construct is used to indicate that the variable lnL should be reduced using the
computation Sum.

Locality is strictly enforced by Sequoia because tasks can only reference local data. In this
manner, there can be a direct mapping of tasks to the Cell architecture where the SPE local
storage is divorced from the typical memory hierarchy. By providing a programming model
where tasks operate on local data, and providing abstractions to subdivide data and pass it on
to subtasks, Sequoia is able to abstract away the underlying architecture from programmers.
Sequoia allows programmers to explicitly define data and computation subdivision through
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a specialized notation. Using these definitions, the Sequoia compiler generates code which
divide and transfer the data between tasks and performs the computations on the data as
described by programmers for the specific architecture. The mappings of data to tasks and
tasks to hardware are fixed at compile time.

In Sequoia, application users may suggest to the compiler certain optimization approaches
such as double buffering for transferring data and an alternative strategy of mapping data
divisions to subtasks. The compiler generates optimized code based on these hints, if possible.

Sequoia tries to ensure that programmers are free from the awareness of the architectural
constraints such as the DMA size and data alignment requirements by providing an interface
to allocate arrays. Programmers are expected to use such an interface to allocate arrays which
are handled by Sequoia. When a programmer makes a request for an array of a particular
size, the amount actually allocated by Sequoia may be larger. It must be at least 16 bytes to
satisfy the DMA size constraint, and it must be a multiple of 16 bytes to satisfy the DMA
alignment constraint. Additionally, Sequoia must allocate memory for the data structure
that describes the array.

Sequoia also provides an interface to copy an ordinary array to an array allocated by the Se-
quoia interface. When applying the Sequoia framework to a given reference code, program-
mers allocate Sequoia arrays and copy existing arrays to the Sequoia counterparts before
calling the Sequoia computation kernel. Conforming to this assures that the architectural
constrains are satisfied at the cost of additional copying overhead.

In our experiments, we use the customized array allocation interface which allocates space
for the Sequoia array structure only—it does not actually allocate any extra data. We then
manually point the Sequoia array data structure to the existing data. Therefore, the DMA
constraints are explicitly taken care of in our experiments when an array is allocated. This
technique avoids unnecessary copies from application managed data to Sequoia managed
data, as well as unnecessary allocations.

5.3 Cell SDK

Our third programming model is the Cell SDK 3.0, as provided by IBM. The SDK exposes
architectural details of the Cell to the programmer, such as SIMD intrinsics for SPE code.
It also provides libraries for low-level, Pthread style thread-based parallelization, and sets of
DMA commands based on a get/put interface for managing locality and data transfers.

Programming in the Cell SDK is analogous, if not harder, than programming with MPI or
POSIX threads on a typical cluster or multiprocessor. The programmer needs both a deep
understanding of thread-level parallelization and a deep understanding of the Cell hardware.

While programming models can transparently manage data transfers, the Cell SDK requires
all data transfers to be explicitly identified and scheduled by the programmer. Furthermore,
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the programmer is solely responsible for data alignment, for setting up and sizing buffers
to achieve computation/communication overlap, and for synchronizing threads running on
different cores. However, hand-tuned parallelization also has well-known advantages. A
programmer with insight into the parallel algorithm and the Cell architecture can maximize
locality, eliminate unnecessary data transfers and schedule data and computation on cores
in an optimal manner.

5.4 Qualitative Comparison

The most obvious difference between the Cellgen and Sequoia code samples is length. What
Cellgen can express in 13 lines, Sequoia requires 26. This brevity comes from the fact that
Cellgen is designed for data-parallel code, but it is instructive to examine exactly what is
implicit and explicit between Sequoia and Cellgen.

Data Direction Cellgen uses reference analysis to infer from the programmer’s code if vari-
ables are in, out or inout. Sequoia requires the programmer to explicitly state the data
direction for each variable at all levels—note that in the Sequoia code, the programmer
must duplicate effort by redeclaring all of the variables passed into Likelihood::Inner for
Likelihood::Leaf. Duplication of effort implies that the introduction of bugs is more likely
when programmers change code [83].

Data Division The Sequoia code uses the mapreduce construct and a tunable variable to
describe how the data should be divided. Cellgen infers how the data should be divided
among the SPEs based on how the programmer uses the variables.

Locality Sequoia controls locality through tunable parameters. While the compiler replaces
this parameter with a static value at compile time, that value comes from a configura-
tion file specific to the target architecture. Cellgen determines locality through both
static and runtime information, as explain in Section 3.8.

Both programming models require some construct to say “this is a reduction.” However, the
Sequoia construct requires the reduction to be placed in a separate leaf function, while the
Cellgen construct allows the programmer to state the reduction inline with the rest of the
code.

Requiring more language constructs to implement the same computation is not necessarily
a weakness for Sequoia. While there is marginal benefit in the case of data parallel code,
Sequoia’s explicit constructs allow it to be used in more general ways. It is a more general
means to express parallelism, and can be applied to programming paradigms that break
Cellgen’s assumptions.
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Both Cellgen and Sequoia are clear programmability wins over coding directly with the
Cell SDK. We have focused most of our discussion here on how parallelism is expressed
on a particular computation. This ignores one of the major benefits that any programming
language for EMM processors will provide: infrastructure. By using a programming language
that targets a particular architecture, programmers are freed from having to deal with details
unrelated to their application. We have focused most of our communication discussion
on DMAs because they have a large impact on performance, but there is more PPE-SPE
communication that must occur just to initiate a computation on SPEs. This convenience is
analogous to the ease with which C programmers can define functions and ignore assembly-
level details such as how the parameters are accessible from within the function, or how the
function knows where to resume execution upon completion.

5.5 Quantitative Comparison

For a quantitative analysis, we compare the performance of each implementation of each
application. The experimental environment is a Sony PlayStation 3 running Linux with a
2.6.24 kernel and Cell IBM SDK 3.0. On a PS3 running Linux, only six SPEs are available.
The compiler is gcc 4.1.2 with full optimizations turned on. Each data point, except for Cell-
Stream, represents the best of 40 runs; we found this more reproducible and representative
than the average. For CellStream, the average is more appropriate.

5.5.1 CellStream

CellStream [88] is a benchmark designed to transfer a large amount of data from main
memory through the SPEs as fast as possible. The goal is to come as close as possible to
achieving the theoretical bandwidth peak of the Memory Interface Controller. Figure 5.1
shows the bandwidth achieved by CellStream implemented with two different version of
Cellgen, two different versions with Sequoia, the original version implemented with SDK 3.0,
and a version which uses only the PPE. The test streamed a 192 MB file cached in memory
through a single SPE in 16 KB chunks (except in the PPE only version). The bandwidth
was calculated by dividing the total data transferred by the amount of time spent working.
Any extra time spent by the PPE threads reading in and writing to disk was not factored in.
The PPE only version ran solely on the PPE and modified the memory by using a memset
call on the data. It serves as a baseline for comparison, as it represents what can be achieved
without the aid of the SPEs.

Figure 5.1 measures the bandwidth of streaming the data from main memory to the SPE
and back to main memory. Data streaming requires a DMA get, some processing, and a
DMA put command. The bandwidth calculations in Figure 5.1 are the total data transferred
divided by the time the SPE was busy. This SPE busy time includes reading and writing of
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Figure 5.1: Average bandwidth achieved by each implementation of CellStream as a function of the
number of SPEs used.

the data, so each 16 KB of data had two DMA operations performed on it.

The two different versions of Cellgen used with CellStream have different scheduling policies.
Specifically, one parameter was changed in compute_bounds, which is explained in detail in
Section 3.6. The approach described there tries to find the most even division of the iteration
space. We accomplish this by dividing the space in 16-byte chunks. While this approach does
achieve a fair division of work, it does not respect the cache line size of the architecture—
it is possible to have data divisions that are not 128-byte aligned, which is the size of a
cache line. For 1, 2 and 4 SPEs, the data transfers happen to be aligned on cache lines.
Since CellStream is, by design, communication dominated, the cost of transferring data not
aligned on a cache line matters more than having an equal division of work among the
SPEs. The alternative version of Cellgen divides the iteration space in 128-byte chunks,
which respects cache line sizes at the cost of a less even division of work among the SPEs.
In the future, we will use the prediction presented in Section 3.9 to predict if an accelerated
region is computation or communication dominated. For computation dominated regions,
a scheduling policy which favors an even distribution of work is best. For communication
dominated regions, a scheduling policy which respects cache line sizes is best.

We implemented CellStream in two different ways with Sequoia. The first, labeled sequoiaW
in Figure 5.1, does the same work as the Cellgen and SDK3 versions on the SPE: set each
byte to the character ’1’. With both Cellgen and the SDK3 versions, this operation is vector-
ized. (Cellgen is not a vectorizing compiler, but it will preserve code that has already been
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Figure 5.2: Whole-application timing profile for Fixedgrid. PPE kernel measures the time to
complete each offloaded function, from the perspective of the PPE. Array copy is the time spent
on copying arrays from main memory for each discretization function. PPE work includes array
initialization and file I/O time.

vectorized. Sequoia will not.) The Sequoia version labeled sequoiaW uses an unvectorized
for loop to set its buffer elements. The code that Sequoia generates for the SPE has three
pointer dereferences for every buffer access. Consequently, the Sequoia code must perform
16 times the amount of stores due to not being vectorized, and each of those stores requires
three additional loads to determine the correct local store address. This behavior makes
the Sequoia version computation dominated. In order to evaluate Sequoia’s communication
scheme, sequoiaNoW performs no work; the SPEs do communication only. It represents the
bandwidth Sequoia can achieve after further SPE code optimization.

All three implementations issue 24,576 DMA calls of 16 KB each (12,288 reads and 12,288
writes). The only difference between the hand written version and the models is the use
of double buffering with DMA fencing calls in the former and triple buffering in the latter.
The fencing calls used in the hand written version have shown a slight speed up compared
to using an extra buffer.

The main bottleneck in all implementations is the Memory Interface Controller. The MIC
can access the memory at a rate of 16 bytes per bus cycle. The EIB operates at 1.6 GHz in
our experiments (half of the CPU clock frequency) which gives a theoretical peak speed of
25.6 GB/s.
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Figure 5.3: SPE-kernel timing profile for Fixedgrid, which shows the time breakdown of offloaded
functions. SPE kernel is the time spent on core computation excluding DMA and array copying
overheads. Array copy is the time spent on copying arrays to SPE local storage. DMA wait is the
DMA data transfer time not overlapped with computation in addition to the time for checking the
completion of DMA commands. DMA prepare is the time to prepare DMA addresses and lists in
addition to the time to queue DMA commands.

5.5.2 Fixedgrid

We experimented with nine different implementations of Fixedgrid to see how the handling
of non-contiguous data transfers affects the performance of the application. These implemen-
tations represent the choices for how an implicit model can abstract strided accesses. The
version of Cellgen we used could not handle handle strided access to memory. Consequently,
both the Cellgen and Sequoia versions of Fixedgrid only access contiguous memory from the
SPEs.

Fixedgrid has two types of computational kernels: the row discretization kernel and the
column discretization kernel. The former requires row data from a contiguous region of
memory, and the latter requires column data from a non-contiguous region of memory. For
each time-step iteration, the former is called twice as much as the latter is. In the serial
version, column data is copied to a contiguous buffer as each column is needed by the column
discretization kernel running on the PPE. The row/column discretization kernel requires a
row/column from three different matrices to compute a result row/column.

The serial-reorder version maintains a transposed copy of each matrix. Therefore, no buffer
is used in the column discretization kernel in contrast to the serial version. Instead, the
values of each transposed matrix are copied as a whole from the original matrix before the
column discretization kernel. They are then copied back as a whole to the original matrix
after the computation. The kernel accesses data directly from the transposed matrix. This
version benefits from higher locality than the serial version since the transformation from
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row-major to column-major format is grouped by each matrix. Consequently, the serial-
reorder version spends less time copying column data as shown in Figure 5.2. The rest of
the implementations—except DMAlist—are based on the serial-reorder version. Therefore,
they all spend similar amount of time copying column data on the PPE. There is also a
smaller amount of time spent copying row data in both of the serial versions. This operation
is replaced by DMA calls in other versions.

The Cellgen and Sequoia versions are implemented with two types of SPE kernels: conven-
tional operations (as in the serial versions) and SIMD operations. Both of the handed-coded
versions, DMAlist and PPE-reorder, are only implemented with the SIMD kernel. The
Cellgen and Sequoia versions with non-SIMD kernel show similar performance.

In Sequoia, we test two strategies for mapping data sub-blocks to subtasks, labeled Sequoia-
ib100 and Sequoia-ib1. The difference between Sequoia-ib100 and Sequoia-ib1 is the map-
ping of data sub-blocks to subtasks. Mapping configuration files allow users to specify the
interblock mapping strategy that Sequoia uses to decide how data is distributed to sub-
tasks. When the interblock option is set to 100 (Sequoia-ib100), Sequoia performs a block
distribution of data with a block size of 100; task0 takes from block0 to block99, task1 takes
from block100 to block199, etc. When the interblock option is set to 1 (Sequoia-ib1), Sequoia
performs an interleaved assignment of data to tasks with a block size of 1; task0 takes block0,
block6, block12, task1 takes block1, block7, block13, etc., given that there are six subtasks for
six SPEs.

The Cellgen version assigns blocks of contiguous iterations to each SPE. The block size is
determined at runtime so that each SPE gets as close to an equal amount of work as possible.
This division of work is similar to the Sequoia version when the interblock mapping strategy
is 100. It exhibits load imbalance due to the data dependency in computation cost, as shown
in Figure 5.3.

The DMAlist implementation of Fixedgrid uses DMA lists to transfer columns of data. DMA
lists are the only mechanism provided by the Cell to perform scatter/gather operations.
Column accesses are achieved by constructing lists of DMAs for each element in the column.
However, since the minimum size of a DMA is 16 bytes, and each element is an 8 byte
floating point value, DMA lists transfer unnecessary data. The SIMD operations also work
on the data that was transferred as an artifact of the minimum DMA size. Unlike the other
versions, DMAlist does not require column data to be reordered on the PPE or SPE.

In the PPE-reorder version, to make the same kernel work on non-interleaved row data, it
is obtained by a DMA transfer and is interleaved into a vector array twice as large as the
data itself. This copy operation on SPUs introduces the row array copy overhead shown
in Figure 5.3. Since columns also require copying—they are reorganized into contiguous
arrays—both row and column discretization kernels rely on copying operations.

The computation of an array element in the Fixedgrid kernel is dependent on the preceding
elements in the array. Therefore, it is not possible to further utilize vector operations by
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Figure 5.4: Total execution time as a function of DMA buffer size.

condensing a vector array. However, it is possible to utilize wasted vector operation cycles if
two row/column elements are fetched and computed at the same time. When a row result
is ready in an interleaved array, it is copied back to a non-interleaved buffer array on the
local storage for bulk DMA transfer. Cellgen and Sequoia versions with the SIMD kernel
rely on the same data rearrangement strategy as that of the PPE-reorder version. Overall,
we find that the lack of support for automatic generation of DMA scatter/gather operations
is the key reason for the performance gap between the high-level programming models and
the hand-tuned version of Fixedgrid.

5.5.3 PBPI

Applications with a fine granularity of parallelism are sensitive to the size and frequency
of DMAs between the SPE and main memory. Since PBPI is such an application, we
experimented with different buffer sizes, as shown in Figure 5.4.

With the manual implementation, the optimal performance of PBPI was achieved with a
buffer size of 8 KB. The best Sequoia performance was with a buffer size of 4 KB. With
Cellgen, the best performance was achieved with a buffer size of 2 KB which is used in 64
unrolled iterations of a computational loop.

The principle behind loop unrolling on the SPE is to maximize the overlap of computation
and communication. As the unroll factor increases, so does the amount of data transferred
for each DMA. If the size of the DMA is too small, the data transfers can not keep up with
the computation. But, as the unroll factor increases, so too does the code size, and eventually
the code size becomes too large for the SPE. The best unrolling factor balances DMA size,
computation time and code size. Cellgen programmers control loop unrolling by explicitly
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Figure 5.5: Comparison of the best cases from each implementation. SPE kernel accounts for the
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commands. SPE overheads account for DMA preparation, barriers, and other programming model
specific overheads which vary depending on their implementations. Signaling accounts for overhead
from signaling between PPE and SPE.

setting the unroll factor in the directive. Cellgen uses this unroll factor to choose a buffer
size based on the use of the array inside the loop. These experiments are the groundwork
towards deducing the best unroll factor at compile time.

The major factors that influence performance in all three cases are the performance of the
computational kernel which is either manually written or generated for the SPE; the overhead
of DMA related operations; the extra overheads on SPEs generated by the programming
model runtime; and the overhead of signaling between PPE and SPE, as shown in Figure 5.5.

The SPE computational kernel generated by Sequoia relies on data structures to describe the
array organization. Array accesses incur overhead due to the additional computation needed
to translate the programmer’s intent to Sequoia’s data layout. This overhead is an instance
of a programming model abstraction impacting performance. Similar overheads specific to
Sequoia include the constraint checking for the size and alignment of DMA data and the
DMA buffer padding to satisfy the constraints.

There are two differences between the SPE computational kernel generated by Cellgen and
the computational kernel from the reference code: loop unrolling and a modulus operation
introduced to each array access to translate a main memory address to an SPE buffer address.
The hand-coded kernel is loop-unrolled and vectorized. The total execution time and the
SPE kernel time of each implementation are shown in Figures 5.6(a), 5.6(c), and 5.6(e).

In Cellgen, the iterations are distributed to the SPEs once, before the computation starts,
as opposed to dynamically on demand as the SPEs complete iterations. If the distribution
of iterations is imbalanced, there may be variance in the time it takes for a single SPE to
complete its iterations. The SPE that takes the longest holds up the rest of the computation.
The imbalance is a result of using the prescribed buffer size as the atomic unit upon which
to divide iterations. As the buffer size increases, the SPE with the most work can have
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Figure 5.6: The impact of DMA buffer size on the performance of each PBPI implementation. SPE
kernelmax and SPE kernelmin show the maximum and the minimum time spent by SPE kernels
among 6 SPEs respectively. The total runtime is bounded by the sum of the maximum kernel time
and other overheads.
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proportionally increasing work. This is the reason that the minimum and maximum SPE
kernel time diverge for Cellgen, as shown in Figure 5.6(c).

Sequoia DMA performance benefits from the redundant copy elimination strategy, which
avoids unnecessary DMAs when the same data is used in multiple locations. Cellgen obtains
a similar benefit for data declared as private; the data is DMAed to each SPE only once.

The multibuffering DMA scheme is used to hide DMA data transfer overhead in all three
implementations. However, DMA transfer overhead is exposed when waiting for the com-
pletion of the DMA command at the beginning and at the end of the iterations, where there
is no computation to overlap with. This overhead becomes more pronounced as the buffer
size increases. On the other hand, when computation completely overlaps the data transfer,
the major overhead is the cost of checking the completion of a transfer, which decreases as
the DMA buffer size increases and the number of DMA calls decreases. When the trans-
fer time of a DMA becomes larger than the computation time for an iteration, it cannot
be hidden completely and is exposed as overhead. The DMA wait overhead shown in Fig-
ures 5.6(b), 5.6(d), and 5.6(f) includes the cost of checking the completion of DMA transfers
and their exposed overhead. The DMA prepare overhead includes the cost of issuing DMA
commands and the cost of manipulating buffer addresses and DMA tags.

To optimally run an application like PBPI, it is important to balance the DMA data transfer
and computation costs. The cross-over point is reached with different buffer sizes in the three
implementations. This difference is due to the variance in the execution time for an iteration
in each version. The variance exists because each programming model provides different
abstractions which have different associated overheads.

The DMA wait overhead becomes minimal when the buffer size is 2 KB in the hand-coded
case, while it becomes so at 4 KB for Cellgen and 8 KB for Sequoia. This discrepancy is due to
the difference in the cost of the generated computational kernel and data transfer strategies.
Optimal performance is achieved when the sum of the computation costs and all related data
transfer overheads is minimal. All data transfer overheads include the exposed wait time for
DMAs, time spent to prepare DMAs, and time spent to verify DMA completion. This can
be seen in Figure 5.6, as the best performance for each implementation is achieved when
the sum of computation costs (SPE kernel) and the exposed data transfer overheads (DMA
wait and DMA prepare) are at their minimum. This minimum occurs for the hand-written
version at 8 KB, at 2 KB for Cellgen, and at 8 KB for Sequoia.

In the hand-coded case, the epilogue (which includes the computation and communication
for the final iterations which are not a multiple of the buffer size) is inefficient: one DMA
is issued for each iteration. In Cellgen and Sequoia, one DMA command is issued for the
entire remainder of the data. SPE overheads incurred from each DMA transfer decrease as
the buffer size increases, and overheads related to an SPE parallel region (such as barriers
and signaling) decrease as the total number of parallel regions are called at runtime.

Sequoia has other overheads on the SPE, shown in Figure 5.6(f), including barriers, reduc-
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tions, and extra copies of scalar variables which are artifacts of the Sequoia compilation
process. Such overheads become noticeable when there is a large number of offloaded func-
tion calls. There are 324,071 offloaded function calls in a PBPI run, while there are only
2,592 and 12 offloaded function calls in Fixedgrid and CellStream respectively.

At the end of a leaf task, Sequoia sometimes requires the SPEs to synchronize among them-
selves for a barrier. In contrast, Cellgen does not require such a barrier among SPEs. Instead,
each SPE waits until all outstanding DMAs have completed and then sets a status value in
its local storage to indicate completion. The PPE polls these values in each SPE directly,
waiting for all SPEs to complete. Cellgen relies on a similar method for collecting the result
from SPEs for reduction operations, while Sequoia relies on the DMA and barriers among
SPEs. For PBPI, the current Cellgen reduction method is efficient because the reduction
data is a single variable. In cases where multiple values are reduced, however, the Sequoia
method of using SPEs for reduction operation might be superior. The signaling method
used is also different: Sequoia relies on the mailbox communication protocol provided by the
Cell SDK, while Cellgen accesses the memory directly. The direct access generally performs
better.

5.6 Summary

Shared memory is not the only valid abstraction for a heterogeneous multicore with software-
controlled memory. Instead of hiding the fact that the cores are not a part of the normal
memory hierarchy, a programming model can represent this separation at the language level.
Such a representation can be accomplished by allowing programmers to define tasks that op-
erate only on specified data sets. Such an approach is similar to programming models that
abstract distributed programming (such as Charm++ [60], which uses object-oriented con-
structs to to describe message passing) and to programming models based on task parallelism
(such as Cilk [20, 36], which depends on shared memory). Sequoia [34] implements such a
programming model. This chapter compared the shared memory approach with the task
based, explicit data division approach both in terms of performance and programmability.
We found that for data-parallel code, shared memory abstractions with implicit data trans-
fers (such as Cellgen) are more concise and can outperform task based models that require
explicit data divisions (such as Sequoia).

This cases study focused on different ways to program a heterogeneous multicore processor
with an explicitly managed memory hierarchy. In the next chapter, we look at other kinds
of multicore processors.



Chapter 6

Parallel Hardware Architectures: An
Evaluation of Shared Memory
Abstractions Across the Spectrum

The previous chapter was a programming model comparison with a given parallel hardware
architecture, the Cell. We fixed the hardware, and varied the programming models. This
chapter is the inverse study: we use programming models designed for data-parallelism, and
vary the parallel hardware architectures. For two of the architectures we use a programming
model that is data-parallel with shared memory abstractions. For the third architecture
we use a programming model that is not strictly a shared memory abstraction, but the
parallelization strategy is the same as with the prior models. The hardware we use represents
the spectrum of currently available parallel hardware architectures.

There are multiple approaches to designing parallel architectures. Heterogeneous multicores
are one such approach, and their potential for high performance is tied to their specializa-
tion. Homogeneous multicores have the advantage of relying on existing implementations of
shared memory abstractions. The emerging area of general purpose programming on graph-
ics processors (GPUs) presents yet another parallel architecture to explore—its approach
is radically parallel compared to all of the previously discussed architectures, yet there are
limitations in the kinds of computations that can exploit this parallelism.

We introduce a new context in this study: stream computing. Streaming implies the con-
stant arrival of live data which must be processed in real-time. Achieving real-time processing
requires both high throughput and low latency. Our work focuses on problems that are rele-
vant to IBM’s System S [11, 56, 57, 97, 100] and the Spade (Stream Processing Application
Declarative Engine) programming language [38, 46] that runs on top of it. In Spade, opera-
tors are connected to each other through streams. Operators receive, process and send data
tuples through their streams. Spade is a stream-oriented programming language as streams
serve as both the main communication mechanism between operators and determine how an
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application is compiled and deployed.

Our goal in this study is to evaluate currently available multicore architectures for acceler-
ating streaming systems. That our study is performed in the context of System S and Spade
is important because its streaming nature places constraints on our study. Specifically, we
constantly have to move large amounts of data in and out of the accelerator. This require-
ment will stress a multicore’s ability to efficiently transfer data. We choose an operation
common in stream computing—aggregation—as a representative task for the requirements
of stream computing.

6.1 Motivation

Streaming aggregation is a performance-critical operation in the emerging area of large-scale,
distributed stream computing. It is a required operation for any streaming computation that
requires data summarization. Further, its salient characteristics—heavy reliance on data
transfers, relatively low computation per byte—are similar to other fundamental operations
found in stream computing. Hence, accelerating streaming aggregation is an important
problem for those that develop and deploy streaming applications and middleware.

In order to attain good performance with an accelerator, developers must first understand
how their problem maps to a given architecture. Industry efforts such as OpenCL [61] try
to extract a common interface for different multicore architectures. A single interface helps
developers because they and their tools can target that interface instead of the disparate
architectures available to them. But the abstraction breaks when it comes to performance:
different architectures are better at difference tasks and a common interface will not change
that.

Our case study investigates how streaming aggregation maps to currently available parallel
architectures. We are primarily interested in parallel architectures that are available to
developers right now. Multicore architectures are often characterized as “emerging,” but
that is no longer the case. There are multiple kinds of multicore processors currently on
the market. Multicore architectures will certainly continue to change, and perhaps change
radically, but developers have to deal with the current multicore reality. The purpose of
our case study is to identify which current parallel architectures are acceptable accelerators
for streaming aggregation, while at the same time determining which characteristics of our
chosen application are applicable to stream computing as a whole.

In our case study, we compare the parallelization of streaming aggregation on three different
parallel architectures. We use a sequential version as the baseline. On one end of the
multicore spectrum we have an Intel Core 2 Quad system [4], which is a homogeneous
multicore similar in principle to an SMP. On the other end we have an Nvidia GeForce
GTX 285 GPU [7], which is radically data parallel: thousands of threads performing tiny
amounts of work, but with coarse access to main memory. Somewhere in the middle is the
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Cell Broadband Engine [23], which is better suited at data parallel computations than a
homogeneous multicore [19] but is not as massively data parallel as a GPU. It is better than
the GPU at control-intensive code, but not as good as the Intel multicore. Like the GPU,
it allows for explicit control of data movement, but like the Intel multicore, it has the same
latency and bandwidth connection to main memory.

Streaming aggregation is an obviously data parallel problem that appears often in the domain
of high frequency trading [105]. Extracting useful parallelism from the computation is more
difficult than it appears due to both its streaming nature and the data characteristics from
our domain of high frequency trading. First, its streaming nature means we have only
relatively small amounts of data at a time. Second, our data is live stock market trades
and quotes [12, 105]. The frequency of trades for a particular symbol roughly follows Zipf’s
law [22], which causes a severe data distribution imbalance. Using our stock market derived
workload, we determine the best configuration for each implementations against each other.

We distinguish our study from prior work in two ways. Two prior studies used code generators
specific to their problem domains. The work of Datta et al. [30] used a code generator specific
to stencil computations, and the work of Linford et al. [70] used a code generator specific
to chemical kinetics. Our study focuses on streaming aggregation, but uses compilers which
support a more general class of problems. The second distinguishing characteristic is the
class of problems covered by our study. Aggregation performs a single pass over memory,
which is in contrast to stencil and chemical kinetics codes which rely on data reuse for high
performance. Not being able to benefit from data reuse has a significant impact on an
algorithm’s suitability to a particular architecture.

The work of van Amesfoort et al. [94] compares the implementation and performance of
a data-intensive convolution resampling kernel on platforms similar to our study: a cache-
based homogeneous CPU, a GPU and the Cell. Their work looks at a problem that is data-
movement bound in a similar way that streaming aggregation is. However, they consider the
performance of the kernel in isolation. Because we work in a streaming context, we cannot
look exclusively at the performance of our computational kernel. We must also consider the
performance of both transferring the data to the kernel, and communicating results back
out to the rest of our streaming system. While we are interested in the performance of
our computational kernel, we are primarily focused on accelerating streaming aggregation
in existing streaming systems. As such, we must consider all data transfer costs associated
with real systems.

We set out to answer several questions in our case study. We know that the GPU has
enormous computational potential, but do the constraints of streaming aggregation prevent
us from being able to exploit it? It is not obvious if the latency and bandwidth between the
host and the GPU is sufficient for streaming data. Aggregation is naturally data parallel,
and the GPU is computationally better suited for the problem than the Cell architecture,
but the Cell has a lower latency access to main memory. Can a lower latency, higher
bandwidth connection make up for lack of computational power? Both the Cell and the Intel
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Quad communicate with main memory in the same way. However, we can schedule memory
transfers on the Cell based on the exact access patterns seen in streaming aggregation. Does
such scheduling of memory transfers perform better than the cache-based prefetcher in the
Intel Quad? From our experimental results, we answer these questions and derive several
lessons:

• GPUs are not well suited to data movement bound algorithms which perform a single
pass through memory.

• Fine-grained memory transfers between the host and GPU perform poorly.

• Programmable caches are able to achieve significantly better performance than hard-
ware managed caches with data movement bound problems with regular access pat-
terns.

• In streaming aggregation, data movement efficacy trumps raw computational power.

These lessons provide guidance to those that want to use multicore architectures to accelerate
stream computing.

6.2 Background

High frequency trading requires significant computational infrastructure. That infrastructure
must be capable of transferring massive amounts of data at high speeds, and simultaneously,
perform analysis on that data in real-time. The time requirements are significant, because
a late answer is of no use, even if correct.

Large scale, distributed stream computing provides the computational infrastructure and
development environment that problems such as high frequency trading require. Questions
in high frequency trading that involve multiple trades or quotes of a particular stock are
solved with aggregation. The combination of streaming aggregation with stock market data
implies two unusual attributes that affect our ability to obtain an efficient parallelization.
The first attribute is the inherent streaming nature of dealing with live market data; the
second is the frequency distribution of particular stock symbols when dealing with such data.
In this section we elaborate on both of these points.

6.2.1 Streaming Aggregation

A streaming aggregation involves at least one stream feeding into an operator where we want
aggregate information on some period of history for that stream. For example, a streaming
aggregation could be as simple as “for every 5 numbers, emit their average.” The window
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Figure 6.1: Stock symbol frequency distribution histograms.

is the set of tuples involved in each aggregation—in the prior example, the sets are every
5 numbers in the stream. That window is also called a count-based window since its size is
determined by a count of the number of tuples seen. The alternative is a time-based window,
where the number of tuples in a window is determined by how much time has passed, which
means the number of tuples that will appear in any given window can vary. There are two
alternatives for how a window progresses: tumbling versus sliding. A tumbling window will
throw out all of its previous values after each aggregation, whereas a sliding window will slide
the window by a predetermined amount. While the computation performed in the example
was an average, in principle, the computation can be any that requires a set of values, such
as a minimum, maximum or summation.

Aggregations can also be further subdivided into groups [12]. Without distinguishing between
groups, an operator places all tuples into the same window. When using groups, an operator
creates windows for each group class, as specified by the programmer. Our experiments
use only count-based, tumbling windows where the groups are stock symbols taken from
stock market data. This aggregation is performed when computing the volume-weighted
average-price for a particular stock, which investors use to guide their own trades.

Our case study only considers aggregations with count-based, tumbling windows. While
the semantics of time-based and sliding windows are different for the consumers of such
aggregations, the systems-level implications are similar. Specifically, the memory transfer
requirements will remain the same. For this reason, our conclusions should hold for other
kinds of aggregations.

6.2.2 Parallel Streaming Aggregation

Inherent in streaming is the concept of tuple ingestion, processing and subsequent generation
of the results. This is sequential and predicated on tuple arrival, even though a streaming
operator like this can be a part of a larger, distributed parallel application. In order to
extract the most parallelism from such a configuration, we must decouple the tuple ingestion
from the processing and sending.
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Figure 6.2: Data structures used in partial aggregations.

When the parallel tuple computation has no history—when computing the result for a par-
ticular tuple does not depend on any that came before it—the decoupled computation can
still occur based on tuple arrivals. But when the parallel computation relies on data history,
as it does in the case of streaming aggregations, it can no longer be based solely on tuple
arrivals.

We must make sure that each instance of the parallel computation has enough tuples to
actually exploit data parallelism. Hence, aggregations become periodic (time-based rather
than arrival-based). We have turned a streaming problem into many small batch problems,
which introduces a trade-off between low-latency and having enough data to exploit useful
parallelism.

Performing aggregations on a periodic basis, instead of when the window is full, requires
introducing the concept of partial aggregations. Since we will always perform an aggregation
at a particular time with whatever data is currently in the window, we need to preserve the
partial results so that they can be used during the next time period. The partials table,
which contains the partial aggregations, is one of three data structures used in streaming
aggregations. Figure 6.2 shows the three data structures and their relationships: the meta
table, the partials table and the window matrix. The window matrix is an N ×W matrix
where N is the total number of groups in the aggregation (each stock symbol corresponds to
a group in our experiments) andW is size of the window. The meta table is of length N , and
each entry contains bookkeeping information for a group in the matrix. This bookkeeping
information is an index into the partials table, an index for the next available entry in the
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window, a flag to indicate if it contains a fully aggregated result, and the result itself (which
in our case is the volume-weighted average price).

The meta table must contain an index into the partials table because while the nth entry
in the meta table will always map to the nth entry in window matrix, this condition does
not hold for the partials table. This discrepancy is due to the fact that the nth entry in the
meta table will not always contain the same group. They do not always contain the same
group because the meta table and window matrix are populated with tuples from groups in
the order they arrive so that the first entries always have windows with at least one tuple.
In the partials table, however, the nth entry is always for the same group. This consistency
is required because the partials table is used across aggregations, while a single meta table
and window matrix are only used for a single aggregation.

In naively constructed data structures, the meta information would be interwoven with the
window matrix. However, the memory layout considerations of the parallel hardware we use
requires their separation because in certain circumstances we can avoid transferring empty
parts of the window matrix.

6.2.3 Stock Market Distribution

Our data is a set of New York Stock Exchange trades and quotes throughout August 8,
2005. This data set contains N = 2805 stock symbols and about 12 million trades (18%)
and quotes (82%). The frequency of a particular stock symbol being traded in a given day
roughly follows Zipf’s law, which predicts that frequency of items with rank x appearing is
proportional to 1/xα, where α is close to 1 [22].

In order to reason about our distribution, we appeal to two properties of Zipf’s law. First,
some symbols will have almost full windows, but most windows will be either empty or have
very few tuples in their windows. Second, as this distribution is fractal, the prior point
holds no matter what time period we use. We cannot fix the data distribution problem by
waiting longer; a longer period will introduce more groups with few tuples. To illustrate
this problem, Figure 6.1 shows three different aggregation matrices from three different
granularities—waiting for 1,000, 10,000 and 100,000 tuples. Even though each successive
matrix contains an order of magnitude more tuples than the next, they all have the general
same shape, and with it the same data distribution problems.

6.3 Case Study

Our case study compares the performance of three implementations of streaming aggrega-
tion on three different parallel architectures. The parallel architectures represent the cur-
rent spectrum of multicore processors available to developers. All three implementations
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Table 6.1: Hardware used in our case study.

Intel Core 2 Quad • 4 cores at 2.66 GHz
• 8 MB shared L2
• 3.8 GB RAM
• 12.8 GB/s max bandwidth from RAM through memory controller
• 42.56 GFLOPS

PowerXCell 8i • 2 Cells at 3.2 GHz
• 32 GB RAM
• 2 PPEs: 2 SMT threads, 32 KB L1, 512 KB L2
• 16 SPEs: 256 KB local store
• 25.6 GB/s max bandwidth from RAM through on-chip memory interface controller
• 102.4 GFLOPS

Nvidia GeForce GTX 285 • 240 cores at 648 MHz
• 1 GB global memory
• PCI Express 2.0 with 16 lanes, 8 GB/s max bandwidth
• 1062.72 GFLOPS

require comparable coding effort, leveraging existing compilers and runtimes to produce
high-performance code suited to its respective architecture.

The purpose of this case study is to explore the suitability of these parallel architectures
for accelerating streaming aggregation. Our end-goal is to allow Spade programmers to
mark operators with an accelerate keyword. The Spade compiler then generates the correct
systems-level code for the desired acceleration hardware. The first step towards this goal
is to both identify which parallel architectures can accelerate the computation, and what
systems-level code will achieve high performance.

6.3.1 Parallel Hardware

We list the specifications for the hardware used in our study in Table 6.1. The Intel Quad
system was also the host for the Nvidia GPU. The physical layout and constraints of our
experimental setup are shown in Figure 6.3.

Qualitatively, the Intel Quad is the most general purpose processor, the Nvidia GPU is the
most specialized, and the Cell is somewhere in the middle. The Intel Quad is a homogeneous
multicore processor with out-of-order execution and a large, hardware controlled cache with
hardware prefetching [67]. The Nvidia GPU has 240 cores, where each core has 32 execution
pipelines (threads) which have access to 16 KB of shared memory. The execution pipelines
inside a core execute in lock-step through the same code. These two architectures represent
opposite ends of the spectrum of how to overlap memory latency with computation. The Intel
Quad allows a single thread of execution to issue instructions out-of-order. Instructions that
cause cache misses do not prevent instructions that do not rely on that data from proceeding.
Each instruction pipeline in the Nvidia GPU 285 is in-order, but there are thousands of them,
and they can be scheduled in groups of 32 to overcome latency. However, this applies to the
Nvidia GPU 285’s access to its own global memory. In order to have data, the host must
initiate a transfer from main memory, off the motherboard, over a PCI Express bus. Note
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Figure 6.3: Physical layout of our experimental machines. The node with the Intel Quad and
Nvidia GPU are on the left, and the Cell node is on the right.

that this means the data must travel through the motherboard’s memory controller—just as
it must for the Intel Quad—before it travels over the PCI Express bus.

We place the Cell architecture in the middle of these two because it retains direct access to
main memory, but it is a heterogeneous architecture suited for data and task parallelism.

f(x)  f(x)Source

TradeFilter VWAP

BargainIndex Sink

Aggregator

TradeQuote

f(x)

f(x)

QuoteFilter

Figure 6.4: Stock market bargain discovery using Spade. Our work occurs in the Aggregator
operator.
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6.3.2 Implementations

We derived our synthetic experiments from the Spade application for stock market bargain
discovery depicted in Figure 6.4. The purpose of the application is to analyze live stock
market data to discover “bargain” purchases where the current asking price for a stock is
less than the volume-weighted average price. The application computes these values by
splitting the stock market data into trades (top stream) and quotes (bottom stream). The
trades must be aggregated based on their stock symbol over a certain window of time. This
operation is a group-based aggregation (see Section 6.2.1). These aggregated values are then
used to calculate the volume-weighted average price for each stock. The bargain discovery
occurs when the two streams are joined again.

Empirical evaluation has shown that the aggregation operator is the bottleneck in this ap-
plication. Our benchmark extracts the aggregation and tries to accelerate it by exploiting
parallelism. Our experiments use market data from August 8, 2005 to create a statistical
model which is used to generate experimental data.

All implementations, whose computational kernels are in Figure 6.5, follow the fork-join
model of data parallelism [74]. The program is sequential up until the point of the ag-
gregation. The aggregation is performed in parallel, the details of which depend on the
architecture-specific implementation. After the parallel section, the sequential portion of
the code has access to the results.

The code we present is systems-level code suitable for the Spade compiler to generate based
on high-level Spade programs. Our goal is to protect Spade programmers from having to
consider the architectural details of the parallel accelerators available to them.

All implementations are data parallel across groups; aggregations over a particular window
happen independently and in parallel. Only groups that have received tuples for a given
period will take part in the computation. The data structures involved are the meta table,
the partials table and the window matrix, which were described in detail in Section 6.2.1.
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#pragma omp parallel for schedule(dynamic, 64)
for (int g = 0; g < table−>meta−>curr; ++g) {
const int n = table−>meta−>raw[g].global;

for (int i = 0; i < table−>meta−>raw[g].next; ++i) {
partials[n].vwap += table−>matrix[g][i].vwap;
partials[n].volume += table−>matrix[g][i].volume;
++partials[n].count;

if (partials[n].count == W) {
table−>meta−>raw[g].rslt.vwap =

partials[n].vwap;
table−>meta−>raw[g].rslt.volume =

partials[n].volume;

partials[n].count = 0;
partials[n].vwap = 0;
partials[n].volume = 0;

table−>meta−>raw[g].send = true;
}

}

table−>meta−>raw[g].next = 0;
}

__global__ void aggregatation(AggrMeta∗ meta,
AggrPartial (∗matrix)[W],
AggrPartial∗ partials, const int threads)

{
const int g = blockIdx.x ∗ THREADS + threadIdx.x;

if (g >= threads) {
return;

}

const int n = meta[g].global;
for (int i = 0; i < meta[g].next; ++i) {

partials[n].vwap += matrix[g][i].vwap;
partials[n].volume += matrix[g][i].volume;
++partials[n].count;

if (partials[n].count == W) {
meta[g].rslt.vwap = partials[n].vwap;
meta[g].rslt.volume = partials[n].volume;

partials[n].count = 0;
partials[n].vwap = 0;
partials[n].volume = 0.0;

meta[g].send = true;
}

}

meta[g].next = 0;
}

#pragma cell shared(
AggrMeta∗ meta = meta−>raw,
AggrPartial∗ matrix = matrix[N][W],
AggrPartial∗ partials = partials)

{
int g, i;

for (g = 0; g < N; ++g) {
int next = meta[g].next;

float vwap = partials[g].vwap;
float volume = partials[g].volume;
int count = partials[g].count;

float res_vwap;
float res_volume;
char send = 0;

if (next == 0) {
continue;

}

for (i = 0; i < next; ++i) {
vwap += matrix[g][i].vwap;
volume += matrix[g][i].volume;
++count;

if (count == W) {
res_vwap = vwap;
res_volume = volume;

send = 1;
vwap = 0;
volume = 0;
count = 0;

}
}

meta[g].rslt.vwap = res_vwap;
meta[g].rslt.volume = res_volume;
meta[g].send = send;
meta[g].next = 0;

partials[g].vwap = vwap;
partials[g].volume = volume;
partials[g].count = count;

}
}

Figure 6.5: Parallel aggregation kernels. Top left is OpenMP for a homogeneous multicore, bottom
left is CUDA for GPUs, and right is Cellgen for Cell. Note that the parallelization effort is similar
for all three architectures.



76

OpenMP

OpenMP [87], a directive-based parallel programming model for C, C++ and Fortran, is well
suited for exploiting data parallelism on a homogeneous multicore processor. Each thread in
our OpenMP implementation of the data parallel aggregation has the same characteristics
of the sequential version. It relies on cache misses and hardware prefetching to move data
around the memory hierarchy. Also, it avoids accessing empty values by maintaining groups
with non-empty windows in a contiguous portion of the window matrix, as described in
Section 6.2.1.

The workload causes a data distribution problem: the stock groups with the most trade
transactions in their window are likely to be clustered together. If the window matrix is
naively partitioned in contiguous ranges, the thread which gets the beginning of the matrix
will have more work than the other threads. To avoid this imbalance, we use OpenMP’s
dynamic scheduler, which distributes work to threads on-demand as the threads finish their
prior assignments. We compiled both the OpenMP and sequential implementations with
Intel’s C Compiler, version 11 [55].

CUDA

CUDA [6] is an architecture for general purpose programming on GPUs which provides
language extensions for C. Note that the code in Figure 6.5 does not include the data
transfers from host memory to GPU memory. Before starting GPU computations, we must
send both the meta table and the window matrix (Figure 6.2) to the GPU. A separate GPU
thread is assigned to each group, and only groups with at least one tuple are sent to the
GPU. The algorithm is linear in the number of groups and the threads share no data, which
obviates the need to tile global memory access.

After the computation, only the meta table (containing the results) is sent back to the host.
The partials table remains resident on the GPU, and the window matrix is no longer needed
by the host.

We implemented three versions for the GPU: one which uses synchronous bulk communi-
cation between the host and the GPU, one which uses asynchronous bulk communication,
and one which does many small transfers. The synchronous implementation sends the meta
table and window matrix to the GPU with one memory copy, then waits for the GPU to
compute and send the result back to host main memory. However, Nvidia’s GTX 285 has
a memory controller which can operate independently of the computational hardware. This
independence allows our asynchronous implementation to, in principle, overlap GPU com-
putation time with communication time by sending the data for a future aggregation during
the computation for the current aggregation.

Both the synchronous and asynchronous implementation send the entire window matrix to
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Figure 6.6: Performance of two sequential implementations.

Table 6.2: Data involved in each aggregation.

number of tuples 1 10 50 100 500 1k 5k 10k 50k 100k 500k 650k
window size 1 2 2 4 11 18 49 130 485 1,120 5,000 7,000

meta data (MB) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
window matrix (MB) 0.043 0.086 0.086 0.17 0.47 0.77 2.1 5.6 21 48 214 300

the GPU, even though most of the windows are only partially filled. We allocate the meta
table and the window matrix so that they are contiguous in memory, which allows us to
issue a single memory copy to transfer all of the data. However, we are still sending data
that is not actually used in the computation. Our third implementation does at most N + 1
memory transfers instead of one memory transfer. The first memory copy is for the meta
table, and the remaining transfers send only the actual tuples contained in each window.

Cellgen

Cellgen’s programming model and capabilities were discussed extensively in Chapters 2, 3,
4 and 5. Because it provides the means to program a heterogeneous multicore in a similar
way that OpenMP can support a homogeneous multicore and CUDA supports a GPU, we
use it to implement streaming aggregation on the Cell. We handle the data imbalance by
populating the meta table and aggregation matrix in a round-robin manner so that the fullest
windows are spread out over the SPEs. Each SPE handles a number of groups determined
at runtime.

Over the course of a computation, all of the meta data is transferred to an SPE’s local
storage. However, if the meta data for a group indicates that the window for that group
is empty, that SPE immediately moves on to the next group. Because the meta table and
window matrix are accessed in different ways, their transfers are scheduled differently.
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Table 6.3: Ratio of data transfer time to total aggregation time for GPU and Cell. For the GPU,
timers on the host were used to track the time needed to transfer the data, and then the time
needed for the computation itself. For the Cell, timers on each SPE kept track of how much time
was spent waiting for a DMA to complete, and separate timers for how long each kernel took to
complete.

tuples 1 10 50 100 500 1k 5k 10k 50k 100k 500k 650k
GPU ratio 0.959 0.959 0.961 0.962 0.973 0.982 0.994 0.998 0.999 0.9998 0.99995 0.99997
Cell ratio 0.464 0.467 0.463 0.443 0.372 0.347 0.316 0.317 0.317 0.237 0.172 0.155

6.4 Results

In our experiments, we explored the entire range of number of tuples to aggregate at one
time. For example, when we say that a window matrix has 1,000 tuples, that simulates a
rate of 1,000 trades a second. The window matrix (of size N ×W ) is necessarily larger than
1,000 tuples; in this case, N = 2805 and W = 130. We scaled the window size to match the
number of tuples the most populous group contains out of the total 1,000 tuples.

The highest transaction rate seen in our dataset is about 3,000 trades per second. Thus,
in our experiments, the range that applies to current market rates is 1,000–10,000 tuples
(assuming a one second aggregation frequency). We explored higher rates in anticipation of
increased market activity [26], and lower rates to understand at what point parallelization
is beneficial. The lower rates are particularly important because they indicate the minimum
problem size that can benefit from parallel hardware acceleration. Offloading execution to
accelerators and managing parallelism both have an associated overhead. If the time it
takes to perform an aggregation sequentially is less than the associated overhead, then that
problem size is too small to benefit from parallelism.

An aggregation matrix has dimensions N × W , where N is the number of stock symbols
(groups) and W is the size of the window. In our experiments, N is fixed because the
number of stock symbols does not change. For each of these experiments we scale the
window size, W , so it matches the number of tuples in the most populous group. Due to
the nature of our distribution, the most populous group is roughly 1% of the total number
of market transactions.

Since W must increase with the total number of tuples in a matrix, the size of the window
matrix also grows. Table 6.2 shows the total amount of data involved in each aggregation.
All results in this section look at both the execution time for a single aggregation, and the
tuples aggregated per second. All scales in our graphs are logarithmic. On the x-axis, in
addition to the number of tuples in the window matrix (top), we also label the axis with
the window size (middle) and the window matrix size in MB (bottom). This data is in
Table 6.2, but we use all three labels to clarify the relationships between performance and
the corresponding number of tuples processed, window size and window matrix size.
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Figure 6.7: Performance of different number of threads used in the Intel Quad implementation.

6.4.1 Intra-implementation Comparisons

Before we can compare the different implementations to each other, we must first establish
which parameters are best for each parallel architecture.

Sequential

Our sequential implementation runs on a single core on our Intel Quad node (Figure 6.6).
This implementation serves as the baseline. We experimented with two different sequential
versions: a full method which naively iterates over all N entries of the window matrix, and a
shortcut method which takes advantage of always packing groups with non-empty windows
in the beginning of the window matrix. The shortcut optimization is simple, but important:
by not iterating over windows that we know are empty, we avoid touching that memory. If
we do not access that memory, then we also do not pay the cost of those cache misses. This
is an obvious sequential optimization, but the notion of “do not transfer data you do not
need” becomes even more important on the parallel architectures.

The difference between shortcut and full in Figure 6.6 becomes negligible at matrices with
5,000 tuples, which is with a window of W = 49. While N is fixed at 2,805 stock symbols for
all of our experiments, as the total number of tuples in the window matrix increases, more
stocks will take place in the aggregation. Hence, avoiding a linear traversal of N becomes
less important.
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Figure 6.8: Performance of different data transfer strategies for the GPU implementations.

OpenMP on Intel Quad

For the OpenMP implementation on the Intel Quad (Figure 6.7), we varied the number of
threads. While the processor has four cores, the shared L2 cache and shared access to main
memory inhibit improvement when scaling from three to four threads. As expected, OpenMP
with a single thread performs within a close margin, never more than 34%, of the sequential
implementation. The difference between the execution of the sequential implementation and
OpenMP with a single thread is a measure of the parallelization overhead. The runtime
system and synchronization required to parallelize a computation has a cost; there is always
a point at which the cost to parallelize a computation is higher than the speedup from
working in parallel.

As seen in Figure 6.7, there is no benefit from multithreading until the number of tuples
reaches 1,000, where two threads outperform a single thread by 7%. Before this point, the
matrices are too small for the work done by each thread to overcome the synchronization
costs. After 10,000 tuples, three threads outperform a single thread by a factor of 1.2 to 2.2.
The performance of the OpenMP implementation is limited by the fact that aggregations
are data movement bound. The hardware limits performance through uncoordinated mem-
ory accesses, and a single point of memory access for all threads. The processor requests
data from main memory based on cache misses. Since the amount of computation is small
compared to data movement time, these cache misses turn into stall cycles.

CUDA on GPU

In Figure 6.8, we compare the synchronous, asynchronous and fine-grained transfer imple-
mentations on the GPU. Because most of the cost is in the data transfer from main memory
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to the GPU, we also show the time spent only on the computation. All three implementa-
tions have the same computation; they only differ in how memory is transferred from the
host to the GPU.

The asynchronous implementation makes no more than a 26% difference up until 1,000 tu-
ples, and no more than a 12% difference above 1,000 tuples in total execution time compared
to the synchronous implementation. Because the communication is about 100 times more
expensive than the actual computation, there is little room for communication and computa-
tion overlap. Once the data arrives at the GPU, it is extremely efficient at the computation,
which can be seen in Figure 6.8 both by the flat execution time and by the constantly im-
proving aggregation rate. The aggregation is a data parallel problem, and GPUs are efficient
data parallel machines. But in this case, the actual performance is not determined by the
computation on the GPU, but by the data transfers from host main memory to the GPU.
This point is supported by Table 6.3, which shows the ratio of data transfer time to total
aggregation time for the asynchronous implementation.

The GPU is also not well suited to many, small memory copies. The implementation with
fine-grained memory transfers performs, at worst, 100 times slower than the implementations
that do one memory transfer. However, as we increase the number of tuples in each window
matrix, which also increases W (the window size), the difference starts to decrease up until
500,000 tuples (W = 5000) where the fine-grained implementation outperforms the bulk
transfers by 35%. At this point, the window matrix is 300 MB, which is roughly a third the
size of the global memory on the GPU. We cannot increase the window matrix significantly
and still have enough space for the two window matrices required by the asynchronous
implementation.

Cellgen on Cell

We varied the number of SPEs used in our Cell implementation and compared that to
the performance of the PPE, as seen in Figure 6.9. We expected the performance of the
PPE aggregation to not scale as we increased the total number of tuples. In line with this
expectation, even the single SPE aggregation eventually outperforms the PPE aggregation.
However, there are startup costs associated with executing a computational kernel on the
SPE, and we wanted to identify the cross-over point where the SPE implementations finally
outperform the PPE. For all but the single-SPE case, this cross-over is at 100 tuples, which
is a matrix of 2,805 stock symbols with 4 trades per window.

That the single SPE case outperforms the PPE at all, which first occurs at 10,000 tuples, is
instructive. The single SPE case is not parallel, which eliminates any appeal to simultaneous
execution. The aggregation is not computationally bound, so the increased computational
power of the SPE does not help. Rather, the single SPE case is able to outperform the
PPE because Cellgen generates data transfers based on the access patterns in the code. The
PPE and the SPEs use the same memory interface controller to communicate with main
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Figure 6.9: Performance of different number of SPEs used for the Cell implementation.

memory. Yet, the PPE relies on cache misses to initiate transfers, while SPEs prefetch
data based on memory access patterns recognized by Cellgen. Data prefetching allows for
fine-grained overlap of data transfers and computation. Using multiple SPEs introduces
parallelism. Hence, the 2, 4, 8 and 16 SPE cases have intelligent, parallel data transfers
and scale appropriately. The importance of overlapping data transfers with computation is
evident in Table 6.3, which shows the ratio of exposed data transfer times to total time for
an aggregation using all 16 SPEs. Comparing the GPU and Cell ratios, unoverlapped data
transfer costs account for a significantly smaller fraction of the total aggregation time.

6.4.2 Inter-implementation Comparison

We compare all of the implementations in Figure 6.10, using the best configuration for
that hardware as shown by the results in the previous section. For the sequential version,
this is the shortcut method; for OpenMP, it is with 3 threads; for the GPU we show both
the asynchronous implementation with bulk transfers and the fine-grained transfers because
there is performance cross-over with large numbers of tuples; and for the Cell it is with
all 16 SPEs. The sequential version is our baseline. For small problem sizes, we expect
the sequential version to perform the best. The point at which the parallel implementations
outperform the sequential version is the minimum problem size needed to exploit parallelism.

In comparison to the sequential version, the OpenMP implementation pays synchronization
costs for work distribution and thread coordination. Consequently, parallelism does not help
until there is enough work to effectively distribute. This cross-over point occurs at 1,000
tuples in an aggregation. After that point, the benefit of using three cores ranges from 4%
to 46%.

The asynchronous GPU implementation never outperforms the sequential version. It suffers
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Figure 6.10: Performance comparison of all implementations.

from the fact that it must transfer the entire window matrix to the GPU. In contrast, the
sequential version avoids accessing empty parts of the window matrix. Since they are never
accessed, the sequential code never pays the cost of transferring data from main memory
into the processor cache. The computation on the GPU itself is up to 650 times faster than
on a single core of the host CPU, but that is dwarfed by the data transfer cost. Streaming
aggregation is fundamentally a data-movement problem, not one of computational power.

While the GPU implementation with fine-grained data transfers eventually outperforms
the bulk synchronous implementation, at its best, the fine-grain transfers are still over 10
times slower than the sequential version. The asynchronous bulk implementation tells us
that the bandwidth between the GPU and host main memory is too low to overcome the
cost of sending the entire window matrix; the fine-grained implementation tells us that the
latency is too high to do many, small transfers to avoid sending unneeded data. Future
heterogeneous multicore architectures can solve this problem with tight coupling between
the main processor and the accelerating co-processors.

The Cell implementation also has startup costs associated with distributing work to the
SPEs. The first point at which using the SPEs is beneficial compared to the sequential
version is at 1,000 tuples, where the Cell implementation is 3.9 times faster. As the number
of tuples increases and the window matrix increases in size, this performance improvement
grows to as large as 5 times faster than the sequential implementation.

6.5 Conclusions

Our results show that the Cell architecture is the best fit for streaming aggregation. Further,
this result should hold for other streaming operations that perform a single pass through
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memory, and have a low computation-per-byte ratio. The Cell architecture fits these class
of problems not because of computational power, but data movement efficacy. The GPU is
capable of massive data parallelism, but it is not well suited to the many, periodic, small
data transfers that are typical in streaming aggregation. Multiple cores of the Intel Quad
eventually outperform a single core, but it relies on cache misses to fetch data. The Cell’s
SPEs have the same low latency, high bandwidth connection to main memory that the Intel
Quad has, but the data transfers are based on the access patterns seen in the code, not
cache misses. The GPU has more raw computational power than Cell, but it is limited by
its connection to main memory. The SPEs can initiate small transfers based on data seen in
a computation. In contrast, the GPU cannot dynamically transfer data based on its needs
while inside of a computational kernel. Because of this difference, the Cell is able to avoid
transferring unneeded data, while the GPU requires it.

Based on these results and experiences accelerating streaming aggregation on three parallel
architectures, we draw conclusions for both software developers and hardware architects.

Developers must first understand the memory access patterns in their algorithms in relation
to the computation. Our problem, streaming aggregation, is obviously data parallel, but it
is not well suited to GPUs, the hardware that is best suited for exploiting data parallelism.
Our algorithm performs a single pass of all the memory transferred to the GPU, and only
one floating point operation is performed for each discrete value transferred.

Developers must also have an understanding of data movement on the architectures. Ho-
mogeneous multicore CPUs transfer data from main memory based on cache misses. GPUs
have their own internal memory hierarchy which was not an issue in any of our experiments,
but must be well understood to take full advantage of their computational power. On top
of that, GPUs have the requirement that all data must first be transferred from host main
memory to GPU global memory. The Cell architecture has the same kind of access to main
memory as a homogeneous multicore, and with the aid of access-pattern aware compilers
such as Cellgen, it can prefetch data.

Developers must finally be able to map their understanding of their algorithms to what will
happen on the hardware. Streaming aggregation is not well suited to GPUs because algo-
rithms which perform only a single pass of the transferred data and have little computation
per element will not be able to overcome the need to fully transfer all data out of host
main memory before the computation starts. Streaming aggregation is well suited to the
Cell because its fine-grain data transfers and programmable local store allows prefetching.
In contrast, a single-pass algorithm with unstructured accesses to memory would probably
perform best on the hardware cache based CPU, and algorithms with quadratic (or worse)
memory use would be able to overcome the cost of transferring data to the GPU.

For hardware architects, we appeal to the need for accelerators to be on the motherboard.
Our experiments would be different if we had an architecture that was radically data parallel
like a GPU, but also enjoyed direct access to main memory. The computational potential
for GPUs is extraordinary, but we are limited by the granularity of its memory transfers.



Chapter 7

Related Work

We consider four sets of related work: multicore programming models that implement
OpenMP [75, 87] semantics, programming models for multicore processors in general, lo-
cality optimizations and transformations and compilation techniques for Cell specifically,
and modeling.

Cellgen did not start as an explicit attempt to implement OpenMP on Cell. Rather, Cellgen
started as an attempt to codify and abstract existing development practices for Cell. The
abstraction of these practices was data parallel code expressed in a shared address space.
Once we identified that the existing programming practices for Cell were similar to the
programming model behind OpenMP, we then started looking towards OpenMP itself for
insight on future directions.

7.1 Programming Models for Multicores

There are many programming models for multicore processors. We start our discussion
with those that are most closely related to Cellgen: OpenMP inspired models for the Cell
processor. We then extend the discussion to programming models that were not explicitly
influenced by OpenMP, and programming models whose implementation was not focused on
Cell.

7.1.1 OpenMP and Related Models for Cell

The projects most directly related to Cellgen are the efforts to support OpenMP on Cell
coming from IBM [24, 25, 32, 33, 86] and joint efforts between IBM and the Barcelona
Supercomputing Center (BSC) [15, 17, 95]. The most recent effort from IBM is the Direct
Block Data Buffer (DBDB) [72] project. Its approach to supporting a high performance,

85
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shared memory abstraction on the Cell is similar to Cellgen: use multi-level buffering for
predictable memory access patterns. It is in the context of a full OpenMP implementation, so
it defaults to a software-cache for irregular accesses. However, DBDB has no support of the
kind of stencil support that is allowed in Cellgen; for off-induction accesses, it does not use a
rotating system of buffers to re-use the buffers in stencil accesses. DBDB also takes a different
approach for how to handle accessing strided data in memory. At runtime, DBDB figures
out the smallest amount of data it can transfer for each DMA list element that contains
each strided element in memory—this is the transfer layout. Once the data is transferred
to the SPE, it is copied to an access layout. The access layout stores the data elements
contiguously, and the data that was picked up as padding is stored at the end of the buffer. If
the elements are written to, then they are copied back to the transfer layout before the DMA
to main memory. In contrast, Cellgen assumes that the data is padded in main memory—
a transformation that it can perform automatically in the future. This difference means
that when accessing strided data, Cellgen can avoid extraneous copies at runtime. Their
paper also has a major methodology difference in that they only compare to software-cache
implementations. In contrast, Cellgen’s performance evaluation has focused on comparing
against expertly tuned applications. Cellgen was originally published in February, 2009 [91],
and DBDB was originally published in June, 2009 [72]. Finally, the implementation of DBDB
is unavailable for a direct comparison with Cellgen.

The other project from IBM to support OpenMP on the Cell is described in its first version
in Eichenberger et al. [32, 33]. The earlier publications by Eichenberger et al. discuss
the entire Cell compiler framework as shipped with IBM’s SDK. This discussion includes
code generation optimized for the SPE architecture, paying particular attention to handling
branches and SIMD code. However, they do also discuss an implementation of OpenMP for
Cell that relies on a software cache. The work presented by Chen et al. [24] and O’Brien et
al. [86] are an extension of the software cache version of OpenMP to allow for the buffering
schemes similar to Cellgen and DBDB. However, this work does not support the kinds of
stencil accesses presented in Section 3.7.

Much of the work by researchers at IBM and BSC has focused on supporting OpenMP’s
shared memory abstractions through optimizing software caches. As discussed in Chapter 4,
the work of Chen et al. [25] attempts to improve software caches by prefetching irregular
references. This improvement is accomplished by executing a provisional version of each loop
that collects and subsequently prefetches the addresses that irregular accesses require. When
the computation version of the loop is executed, those accesses are much more likely to result
in a hit. The work of Vujic et al. [95] presents a software cache that differentiates between
high and low locality accesses—something that can be recognized at compile-time through
access analysis. High locality accesses can benefit from prefetching, greatly increasing the
likelihood of cache hits. Low locality accesses are unlikely to result in cache hits, and their
irregularity means that prefetching is difficult. Such accesses are directed to a cache which
has a lower miss penalty at the expense of a lower hit rate.

There is a spectrum of design approaches to supporting shared memory abstraction on the
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Cell. On one end of the spectrum lie software caches with no optimization. This approach
supports everything, but at the expense of performance. The software cache described in
Eichenberger et al. [32] represents this approach, and the results in Section 3.7 demonstrate
its performance limitations. For the microbenchmarks in Section 3.7, the software cache
performance is at best 2 times worse than Cellgen, and at worst, 31 times worse than
Cellgen.

Cellgen as it was presented in Schneider et al. [91]—no column accesses, and no stencil
support—represents the opposite end of the spectrum. This approach was to only support
the kinds of accesses that, at the time, we knew how to generate high performance code
for. The disadvantage of this approach is that we were limited in the kinds of codes we
could support. Iterations on the designs at both ends of the spectrum have shortened the
gap. The previously mentioned software cache optimizations take advantage of the unique
situation presented by a software cache: the compiler can not only influence cache behavior
with respect to particular accesses, it can outright control it. Cellgen’s support for stencil
accesses relaxes the prior requirement that all loop iterations must be independent, and it
has none of the overheads associated with a software cache. DBDB is the project that is the
closest to being in the middle of the spectrum, with direct use of multibuffering and software
cache for irregular accesses. But, no single project incorporates all of the optimizations.
Such a design would have:

• Direct multibuffering for predictable memory accesses, similar to Cellgen and DBDB.

• Direct multibuffering for stencil accesses, similar to Cellgen.

• A software cache for all irregular accesses—but the software cache must not interfere
with multibuffering.

• Prefetching irregular accesses, as described by Chen et al.

• All of the above may preclude the need for distinguishing between high and low lo-
cality accesses to the software cache—most, if not all, high locality accesses should be
managed with direct multibuffering. But if the distinction still exists, the best solu-
tion should distinguish between high and low locality accesses to the software cache,
as described by Vujic et al.

Another project from BSC influenced by OpenMP is Cell Superscalar (CellSc) [17]. Like
OpenMP, CellSs augments sequential code with pragmas that instruct a compiler what to
parallelize. The pragmas mark a function that should be parallelized across the SPEs,
along with annotations for whether variables are used in an input or output context. CellSs
is implemented in a compiler framework that was originally targeted towards superscalar
processors. The authors use this prior work to maintain a directed dependency graph at
runtime. The nodes in the graph are tasks to be executed on the SPEs, and the edges
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represent data dependencies. The CellSs runtime will schedule independent tasks on separate
SPEs and subgraphs of dependent tasks on the same SPE to take advantage of data reuse.
The approach taken by Cellgen differs in two ways. First, Cellgen operates at the level of
arbitrary code blocks, not functions. Transformations such as those required by handling
stencil accesses would have to be performed by hand by the programmer; only the innermost
computation is marked for offloading to the SPEs. Consequently, transformations that need
to apply to any code outside of an inner loop are not possible. This difference, however, is
related to the second major difference: Cellgen is primarily concerned with data parallelism,
and CellSs is primarily concerned with task parallelism. (However, their model can be
readably adapted to data parallelism, just with the prior limitations.) As a consequence of
this focus, Cellgen uses all SPEs for each offloaded region of code. CellSs allows multiple
inflight tasks and does not use all SPEs for each.

Recent efforts for extending OpenMP with directives that manage dependent tasks [31] are
directed towards improving locality by automatically managing dependencies, hence data
transfers, between tasks executing on different processors or accelerators. Cellgen takes a
different path, by managing locality and communication overlap through implicit task and
data decomposition.

7.1.2 General Multicore Programming Models

The Accelerated Library Framework (ALF) [27, 51] is a library designed for developing
applications on accelerator based architectures. The API is designed so that it can be
applied to general accelerator-based multicore architectures, but the current implementation
is only for Cell. Unlike high-level programming models like OpenMP, Cellgen or CellSs,
ALF is a library only. It is closer to the runtime systems that such programming models
depend on. ALF abstracts various tasks—such as specifying data working sets, determining
what level of multibuffering to use and starting accelerated functions—from the underlying
hardware. But the programmer must still explicitly invoke these actions at the appropriate
time.

Sequoia [34] was covered extensively in Chapter 5. The main concept behind Sequoia is to
develop applications with a multicore processor’s memory hierarchy in mind. Programmers
develop algorithms with abstractions that enable them to define how data should be decom-
posed, and what computations to perform on that data at each level of decomposition. The
Sequoia runtime is then responsible for determining how to map these data decompositions
to the target architecture’s memory hierarchy. Alternatively, Cellgen provides a shared mem-
ory abstraction on the Cell architecture. The performance benefits of Cellgen over Sequoia
were presented in Section 5.5.

RapidMind1 [77, 78] is a language and development platform for multicore processors that is
1RapidMind (the company) was purchased by Intel in 2009 [84], and RapidMind (the technology) was
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independent of the OpenMP programming model. Similar to OpenMP, RapidMind extends
an existing language (C++) with parallel constructs. Different from OpenMP, RapidMind’s
extensions are richer in both semantics and scope. OpenMP extends C, C++ and Fortran
through pragma directives. Two styles of parallel programming are possible with OpenMP:
data parallel and task parallel. For both styles, programmers write sequential code, then
augment their code with OpenMP directives to parallelize it. If programmers remove all of
the OpenMP directives from their application, they are left with a valid sequential program.
This invariant does not hold for RapidMind—its extensions change the way programmers
will develop their applications.

RapidMind’s functionality is provided to programmers through its data types and program
objects. Programmers can define multidimensional arrays of value types. Value types rep-
resent N -tuples of the native numerical types. Of course, C++ programmers already have
the ability to define such constructs. The RapidMind data types, however, are more than
just abstract data types. Their use enables compile time and runtime optimizations such
as generating SIMD instructions and avoiding unnecessary copies. Program objects define
computations on the data types. Inside program objects, programmers must use RapidMind
specific macros for basic control structures such as if-else constructs and looping. These
macros enable compile-time, architecture specific optimizations. Program objects are de-
fined from the perspective of a single element—the inner-most loop in conventional data
parallel code. (This perspective is similar to programming for GPUs using CUDA.) In order
to initiate accelerated computations, programmers apply program objects to arrays. Because
the program objects are defined to operate on a single element of the array, the compiler and
runtime system are free to parallelize the operation in a manner that best fits the current
architecture.

Program objects are similar to closures in functional programming languages: they can close
over local variables; they allow currying (partial application); and they can be composed
with other program objects to create new program objects. These semantics are richer than
those provided by Cellgen and the OpenMP programming model in general. However, Rapid-
Mind’s semantics are expressed in a significantly more cumbersome syntax. One advantage
of Cellgen’s approach is that programmers do not need to adapt their applications to a new
style of programming.

EXOCHI [96] enables OpenMP for heterogeneous multicores, but it does so in a radically
different way than the previous projects. EXOCHI is an extension of the Multiple Instruc-
tion Stream Processor (MISP) [43] project, which supports shared memory programming
on heterogeneous architectures by extending the instruction set and exposing architectural
resources directly to application level, bypassing the operating system. EXOCHI builds on
this infrastructure by allowing “fat” binaries, where instructions for non-IA32 accelerators
can live alongside IA32 instructions. Non-IA32 cores can share an address space with IA32
cores through address translation support at the architectural level only, without requiring

renamed Intel Array Building Blocks [3].
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modifications to the operating system.

Because EXOCHI has architectural support for shared memory, it is able to support Pthread-
style multithreading across heterogeneous cores. Implementing OpenMP on top of such
architectural support has similar complexity to implementing OpenMP on top of a typical
SMP. With compiler support for such an implementation of OpenMP, legacy applications can
execute on heterogeneous multicores. Cellgen’s approach is to support an OpenMP style of
programming by managing data transfers itself. The EXOCHI approach is to try to provide
a shared memory abstraction even at the instruction level.

Streaming languages [29, 39, 42] also expose data locality to the programmer via the stream
abstraction. Decomposing data streams into input/output blocks and buffering these blocks
in local memories is the equivalent of decomposing loops into tasks and scheduling the trans-
fers for the input/output sets of each task in Cellgen. Earlier studies on streaming languages
for both conventional and streaming processor architectures [29, 42] have demonstrated that
the stream abstraction enables locality optimization via compiler/runtime support. We make
similar arguments for Cellgen: promoting programmability without performance penalty.

Another attempt to abstract away difficulties of programming for heterogeneous multicore
processor is Hera-JVM [79, 80, 81]. Instead of introducing new abstractions, or supporting
high performance extensions such as OpenMP, Hera-JVM is a Java virtual machine imple-
mented specifically for the Cell. Programmers can provide hints to guide mappings of Java
threads to the SPEs or to the PPE. Data transfers to the SPEs’ local stores are accomplished
through an object cache, but it has no coherency among the SPEs. Local changes in an SPE
are committed globally at synchronization points.

Charm++ [60] is a distributed, object-oriented programming model based on C++. Recent
efforts have extended Charm++ to also work on the Cell [65]. The result is a distributed
programming model where programmers tag certain Charm++ functions with an accel key-
word to indicate that the task should run on a Cell processor. Such functions are called
accelerated entry methods. Similar to Sequoia, programmers need to specify how the vari-
ables are used in the accelerated entry methods. A specialized runtime [64] is responsible
for telling the SPEs which accelerated entry method to execute, transferring the data to the
SPEs before the execution of an accelerated entry method, and transferring the results back
from the SPEs after its completion. This runtime is similar in design to the runtime that
Cellgen uses, which is a direct extension of the runtime developed by Blagojevic et al [19].
However, there is no library or compiler support for multilevel buffering on the SPEs. Pro-
grammers who are implementing data-parallel code can circumvent this fact by only making
the inner-loop of a computation an accelerated entry method. This technique, however, is
potentially cumbersome to program, and detrimental to performance since the PPE must
be involved after each iteration of the inner loop.

The Liquid Metal project as presented by Huang et al. [49] represents a more radical ap-
proach than others. While it does use object-oriented programming as a basis, its goal is to
find a high-level programming model that can describe computation on many different ar-
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chitectures: a virtual machine on a conventional processor, Cell, GPUs and FPGAs. Huang
et al. present Lime, a language that extends Java to allow value types that have precise
semantics which can easily map to hardware. They also have a corresponding compiler
infrastructure which can produce either Java byte-code for a Java Virtual Machine on a
conventional processor, or code in a hardware description language suitable for an FPGA.
While the design they present focuses on how to map computations to an FPGA, they are
also targeting other multicore architectures such as the Cell and GPUs. Similar to Sequoia
or Charm++, Liquid Metal is an attempt to allow programmers to write a computation
in a high-level language that can be compiled to multiple architectures. Targeting FPGAs,
however, imposes the additional burden of segregating stateful and stateless code. Cellgen
and projects like CellSs and DBDB do not attempt to create a new programming model,
but to map an existing programming model onto new architectures.

7.2 Low-Level Compiler Optimizations

Cellgen is a source-to-source compiler. Since it generates C code, it depends on an optimizing
compiler to generate high performance assembly code. The focus of this work has been on
the burden imposed by having heterogeneous cores with separate memory hierarchies, but
the SPEs themselves present new challenges for low-level code generation. As such, the
work described by Eichenberger et al. [32, 33] that pertains to subword optimization, branch
optimization and instruction scheduling could directly benefit applications that use Cellgen.
The work of Knight et al. [62] focuses on the intermediate representation in the compiler,
sitting somewhere between the level that Cellgen operates on and the work of Eichenberger
et al. They design and implement an intermediate representation (IR) for architectures with
explicitly managed memory hierarchies, where parallelism and data transfers are explicit
in the IR. Their optimizations focus on transformations to this IR code. This work has
also considered auto-vectorization outside of its scope, although experiments in previous
chapters have demonstrated that vectorized code can significantly improve performance.
The work of Nuzman et al. [85] describes techniques to auto-vectorize operations on data
that is not already compactly stored in memory. They describe techniques to recognize and
automatically vectorize computations that operate on elements that are not contiguous in
memory. If such work was coupled with Cellgen, it would enable both high performance
memory access patterns and high performance computations.

7.3 Locality Optimizations

There is a significant body of work for improving the locality of loop-based codes through
code transformation [66, 68, 69, 98]. These techniques change the iteration space of the loops
from accessing complete rows or columns at a time to accessing sub-matrices (also known as
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blocks or tiles) so that data is reused in the cache.

Cellgen is concurrent to parallelizing and optimizing compiler frameworks that seek to ex-
tend such efforts to recent multicore processors by optimizing data movement to and from
explicitly managed memories. Recent work which focuses on scratch-pad memories that can
sustain cache misses tries to distribute loop iterations to cores based on their memory ac-
cess patterns in order to ensure a balanced computation [102, 103]. The polyhedral model
for loop-nest optimization has been extended for GPUs [16]. Similar to compilers based on
the polyhedral model, Cellgen targets locality by blocking data references, however Cellgen
focuses further on the scheduling and optimization of data transfers to maximize latency
overlap. In addition, Cellgen targets optimization of explicitly annotated, OpenMP-style
parallel code rather than full automatic parallelization. It is capable of compiling, with
reasonable efficiency, large scientific codes.

7.4 Modeling

Cellgen uses a model to predict the runtime of offloaded computational loops. This model is a
descendent of the LogP [28] family of models originally described by Culler et al. The original
LogP model recognized the importance of communication overhead and latency in estimating
the execution time of a parallel application. Communication time is important because of the
trend that in parallel computation that the authors recognized: many computational nodes
connected on a network, where each computational node has its own processor, memory and
disk. LogP uses the following parameters:

L: The latency of communicating a message of size w from one node to another.

o: The overhead paid at a node for the computation time needed to send or receive a
message of size w. Note that when one message is sent, the sending node must spend
o time prepping it, and the receiving node must also spend o time receiving it.

g: The time gap a node must wait between sending subsequent messages.

P: The number of processors involved in the cluster. Since the model assumed that there
would be one processor per node, this is also the number of nodes.

The work of Alexandrov et al. [10] extends the model with one more parameter:

G: The Gap per byte of long messages.

The resulting model is called LogGP. The LogP model has an implicit parameter, w, which
is the size of small messages. Alexandrov et al. recognized that many nodes had specialized
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transfer mechanisms for long messages, and if these were not modeled, then the predictions
could be inaccurate by wide margins. The work of Bosque and Pastor [21] further extended
the model to HLogGP: LogGP for heterogeneous clusters. Bosque and Pastor recognized that
there is a tendency towards heterogeneous clusters where individual nodes may significantly
different computational power. Their model uses a vector or matrix as appropriate as a
replacement for the scalar values in the prior models. This change is necessary because once
the cluster is heterogeneous, all of the parameters may be different depending on which nodes
are involved in exchanging messages. In particular, P is no longer just the number of nodes
in the cluster. Rather, P is a vector which represents the relative computational power of
each node.

The work of Blagojevic et al. [18] is a model for multiple levels of parallelism on heterogeneous
multicore processors. While the model is focused on a single node, the models described
above apply since the advent of multicore processors means that a single processor has
similar characteristics to a cluster of conventional processors. They evaluate their model
using a Cell processor. Clearly, their model has the most direct relationship with the model
presented in Section 3.9. However, their model’s purpose is to predict the execution time of
a whole application. The model presented in Section 3.9 is intended to predict the execution
time of a single computational loop. As such, it makes finer considerations, such as which
one of the dual-issue pipelines dominates in a computation.



Chapter 8

Conclusions

The Cell is a dying platform [13]. While this work is about heterogeneous multicore proces-
sors in general, it is unavoidable that much of the effort has gone into supporting a particular
instance of such a processor. The obvious question, with respect to the death of the most
visible instance of a heterogeneous multicore processor, is what is the continued relevance of
this work?

The first reason for continued relevance is that the Cell may be dying, but heterogeneity
is not. The design lessons from the Cell may be integrated into the mainline PowerPC
architecture [101]. Further, the Cell is not the only instance of heterogeneity; Larrabee [92],
Pangaee [99], AMD Fusion [1] and most recently, ARM’s Mali [5] are all heterogeneous
processor architectures. The arguments for heterogeneity presented in Chapter 1 still hold,
and we will likely see more heterogeneous processors in the future. The techniques and insight
provided by this dissertation will help manage the inherent difficulties of programming such
heterogeneous processors.

The results in Chapter 6 make a further argument for heterogeneity. As shown through the
experimental evaluation comparing a heterogeneous multicore, a homogeneous multicore and
a graphics processor, the raw computational power of the graphics processor is enormous. Its
limitation was its communication to main memory. The current state of graphics processors
is perhaps a stop-gap solution. The obvious solution to alleviating the memory latency
problem is to fully integrate a graphics processor on the same chip as the host processor.
This design, however, is a heterogeneous multicore processor.

Further, the fundamental approach this dissertation takes to supporting a shared memory
abstraction on a heterogeneous multicore can have application to homogeneous multicores.
The fundamental approach is to identify memory access patterns at compile time, and to
generate data transfers that enable high performance based on those access patterns, tailored
to the architecture. Current homogeneous multicores have hardware controlled caches. The
first level of these caches, however, is private to each individual core. These hardware con-
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trolled caches could expose software-level mechanisms to influence which data is brought into
the private caches. If such mechanisms are exposed, then the static analysis and code trans-
formations presented in this dissertation could apply with little change. While such analysis
and transformations would not be required for correctness, they can increase performance.

We can take this reasoning higher up the system stack. Consider implementing a shared
memory abstraction over a cluster of compute nodes. Each compute node would map to an
individual core in a heterogeneous processor, and the network connecting the computer nodes
would map to the interconnection network in the processor. The bandwidth capabilities and
latency overhead of the network connecting nodes in a cluster will be significantly different
than the interconnection network on a chip. Because of the connection differences, the
nature of the transformations may be significantly different—the need for a performance
model to inform runtime decisions about the efficacy of parallelizing computations would
surely increase. But the same fundamental analysis would have to take place: what are the
memory access patterns, and how can that data be efficiently transferred to and from the
computational elements.

We can even relax the assumption of static code analysis—fundamentally this work is about
recognizing memory access patterns. Static code analysis is one such means of achieving this.
Such recognition could happen in the context of a virtual machine, in which the runtime
system could have knowledge of the actual addresses being accessed as they are accessed.
Such a capability could find regularity in the kinds of accesses that must be classified as
irregular by static analysis. Finally, an optimizing just-in-time compiler could generate the
data transfers based on the runtime access analysis.

The other purpose of this work is to inform processor architects of the utility of their de-
signs. One of the reasons that the Cell processor itself will not survive in its current state is
the inherent difficulty in programming for it. While heterogeneity will necessarily introduce
complexity, some of complexity of the Cell was perhaps unnecessary. One of the purposes of
this work was to hide the architectural details of a heterogeneous processor to the program-
mer. Our goal was to always maintain high performance, but even basic correctness took a
significant amount of time to achieve. As explained in in Chapter 7, a complete solution for
supporting a shared memory abstraction on the Cell will eventually use a software cache as a
fallback. However, as demonstrated in Chapter 4, the software cache itself is at a significant
performance disadvantage. These two results present a situation where we know we will
eventually need something that does not achieve good performance. However, we can avoid
this situation if the architecture itself had a hardware cache.

Arguing for a hardware cache is perhaps antithetical to the design philosophy of the Cell
processor. However, it is not antithetical to the design of heterogeneous multicore processors
in general. We should use the lessons of past architectures to inform how to design future
architectures. One such lesson is that without a hardware cache, we will eventually want to
fall back on a software cache for some kinds of irregular accesses. Consequently, integrating
a simple hardware cache that still allows for explicit software control could alleviate this
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problem. The work in this dissertation would still be applicable to such an architecture,
with one major difference: it would only be necessary to achieve high performance. Basic
correctness would be supported by the hardware. As a consequence, development for such an
architecture would be significantly easier because developers could write code that is correct
but not efficient, then incrementally improve performance. With the current Cell architec-
ture, achieving basic correctness is in the same order-of-magnitude of effort as achieving high
performance.

The final issue is the most fundamental: the expression of parallelism. How we handle par-
allelism at the language level may become one of the most important issues in Computer
Science in the coming decades. Parallel programming techniques have long been used by the
high performance community to achieve fast, scalable applications. Mainstream program-
mers have used concurrency primarily for software engineering purposes. They may use
multiple, communicating threads and processes, but these techniques are used because they
are the most natural way to structure their application—not to achieve high performance.
The advent of ubiquitous multicore processors is the catalyst for forcing these techniques
from the relatively small community of high performance computing to the mainstream use
of most programmers.

Programming abstractions become mainstream when two conditions are met: when they are
affordable, and when they solve a pressing problem. Historically, this trend has happened
several times. The first compiler was completed in 1957 for Fortran [14], but it was many
years before high-level, compiled languages replaced assembly as the dominant means to
program computers. The sophistication of compiler optimization techniques took time to
mature to the levels such that the gains over programming in assembly were marginal in
most areas. At the same time, the need for portable programs arose when the complexity of
developing exclusively at the assembly level for each architecture became too large.

Garbage collection was first used in Lisp in 1960 [76]. While garbage collection has been
used in many programming environments since then, it did not become a part of mainstream
programming until after the introduction of Java in 1995 [40, 41]. By late ’90s, computer
speeds were such that the performance degradation from garbage collection was becoming
preferable to manual memory management, which is notoriously error-prone. Since then,
improvements in both virtual machines in general and garbage collection specifically have
maintained the economics of that trade-off.

The rise of the World-Wide-Web has seen, along with it, the rise of scripting languages. Perl
was first born as a replacement for shell scripting and stand-alone Unix utilities in 1987. But
it was its proliferation as a web programming language that Perl entered mainstream usage.
In the recent decade, other dynamic scripting languages such as Python and Ruby have taken
on the same role. These languages use dynamic runtime typing, garbage collection on top of
a virtual machine, and generally execute slower than the compiled alternatives. Yet, these
languages remain popular for web programming because the alternatives (C, C++, Java,
etc.) are considered too cumbersome and verbose for the relatively high level concerns of a
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web developer, and the computational power of today’s machines can easily handle them.

Parallel programming has primarily been the domain of high performance computing. Main-
stream parallel programming has long been possible, but is has never been necessary. The
rise of multicore processors is finally making the long-predicted necessity of mainstream par-
allel programming a reality. However, unlike prior programming abstractions that had a
performance cost, parallel programming techniques are a performance enabler.

It is the job of the high performance computing community to assess the applicability of
our current parallel programming techniques to the newly emerging multicore processors.
Techniques that abstract the underlying hardware as much as possible are more likely to be
adopted by the widest community. Therefore, we have to assess both the programmability
of these techniques, and demonstrate their ability to achieve high performance. If a paral-
lel programming abstraction is unable to outperform sequential execution by a significant
margin, then it is not worth the programming effort.

This dissertation is part of the process of evaluating the applicability of our existing tech-
niques for parallel programming to new multicore processors. The shared memory abstrac-
tion presented in this dissertation may not be widely applicable; mainstream programmers
may not have a use for it as data-parallelism is a subset of parallel programming in general.
More general models have recently found traction in recent languages, such as Communicat-
ing Sequential Processes (CSP) [47] in Go, the Actor model [44] in Erlang, and transactional
memory in Clojure. However, evaluating shared memory based programming models is still
a necessary step in the overall area of expressing parallelism. This dissertation contributes
such an evaluation. Shared memory abstractions are suitable for heterogeneous multicores
in terms of both programmability and performance. Future developments and needs will
determine if the programming models explored in this dissertation are applicable to a wider
audience.
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Appendix A

Compiler Design

Exploring compiler designs was not the purpose of this work. However, in order for the
project to succeed, we needed a source-to-source compiler with a code base small enough
for a single developer to handle, yet still be extensible enough for us to experiment with
new features. As such, considerable time and effort did go into the software architecture for
Cellgen. We present the design in this appendix.

Cellgen depends on Boost.Spirit [2] for parsing. Through template metaprogramming and
operator overloading, the Spirit framework allows language grammars to be written directly
in C++. The Spirit framework returns parse trees to the calling program. Note that since
Cellgen is a source-to-source compiler, it operates on parse trees, not abstract syntax trees—
it needs to reproduce syntactic constructions such as braces that are removed from abstract
syntax trees. After parsing, Cellgen performs semantic analysis and code generation phases,
which are the novel aspects of its design. We will explain how these phases work and the
main data structures that these phases operate on.

A.1 Files

Cellgen accepts a single source file which must have a .cellgen extension. A Cellgen source file
can have multiple accelerated regions. From this source file, Cellgen produces two C files:
one for the PPE, and one for the SPE. These two source files are compiled using the Make
files provided by IBM’s SDK. The runtime system code is copied into the directory which
contains the Cellgen source file.
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A.2 Phases of Compilation

The initial phase of compilation is the parsing of the Cellgen file itself. We use the Boost.Spirit
library for parsing. The parsing phase constructs a parse tree for the offloaded code, and a
data structure which captures all of the pertinent information that was a part of the Cellgen
directive itself: the set of private variables, the set of shared variables, the set of reductions,
the reduction operator, and a reference into the parse tree. During semantic analysis, this
reference is used to pair an accelerated region with where the actual code for that region
begins.

After the parse tree has been created and a data structure exists for each accelerated region,
the semantic analysis can begin. The semantic analysis is where the transformations from
Chapter 3 take place: reference analysis, access analysis, buffer substitution and stencil
support. Some of these analyses impact other transformations. For example, the access
analysis determines if a shared variable is an in, out out or inout variable. The transformation
objects for buffer substitutions need to know what kind of variable a shared variable is in
order to generate the correct data transfers. Similarly, the kind of access (contiguous or
strided) and if stencil support is needed changes the behavior of the various transformations.

The semantic analysis proceeds in a similar manner as a recursive-descent parse. As the
analysis recurses through the parse tree, it uses the combined knowledge of the particular
code it sees at a node, the code seen in previous nodes, and knowing where in the grammar
it is to infer programmer intent and what kind of code to generate.

A.3 Transformation Objects

Clearly, Cellgen must modify user code. Most of this modification is in the form of additions
(such as adding code to handle the data transfers), but it also does need to replace and remove
portions of the original code (such as when loops are duplicated for remainder operations,
but only some of the loop must execute). However, modifying the parse tree directly is
potentially messy—it leaves no record of what was changed, which makes it difficult to infer
in later stages what semantic actions were taken in the case that action needs to be undone.

We have taken a functional approach to code generation. During semantic analysis, Cellgen
adds transformation objects (called xformers in the code) to the relevant nodes of the parse
tree. Transformation objects are function objects responsible for generating code that obey
the following interface:

struct xformer: public unary_function<const string&, string> {
virtual ~xformer() {}
virtual xformer∗ clone() const = 0;
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virtual string class_name() const = 0;
virtual string operator()(const string& old) = 0;

};

In C++, function objects are objects that implement the application operator, operator().
They are objects, so they can store information and be passed around a program easily,
but they can also be used as functions. In C++, function objects are used in places where
functional languages would use closures [59, 58].

In Cellgen, a transformation object (a xformer) is an object that when used as a function
takes a string as an argument, and returns a string as a result. In most cases, the result
will be a transformation of the original string. Consequently, transformation objects can be
composed; the result from one can be the input to another. This ability is needed when
multiple transformation objects exist on a single node. The following is the transformation
object used to call the function which determines the iteration bounds for each SPE:

class compute_bounds: public xformer {
const string least;

public:
compute_bounds(const string& l): least(l) {}
string operator()(const string& old)
{
return old + "compute_bounds(&spe_start, &spe_stop, sizeof(" + least + "));";

}

xformer∗ clone() const { return new compute_bounds(∗this); }
string class_name() const { return "compute_bounds"; }

};

In order to explain how transformation objects are used, we must present the parse tree that
Cellgen operates on.

A.4 Augmented Parse Trees

Spirit is parameterized on what kinds of nodes its parse trees contain. We extended the
default node (through inheritance) to also contain a list of transformation objects. Adding a
transformation list to each node means that nodes in the parse tree always carry with them
all of the information needed to generate code at that node. This makes the code generation
phase simple: if the node has no transformation objects, then output the text contained at
that node. If the node has transformation objects, compose them with each other, passing
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the original text into the first one. (This operation is an accumulation, or a right fold where
the list itself contains the functions to be applied.)

Note that the transformation objects are created during semantic analysis, but they are not
executed until code generation. Using function objects, whose execution can be deferred until
code generation time, enables this technique. By creating function objects whose execution
is deferred, we also have the flexibility to add or remove transformations in later stages of
semantic analysis.

A.5 Example

To clarify the phases of compilation, we will walk through a simple example. The following
code implements the sum over an array of integers:

#pragma cell shared(int∗ n = nums) private(int N = N) reduction(+: int s = sum)
{
int i;

for (i = 0; i < N; ++i) {
s += n[i];

}
}

Figure A.1 is the augmented parse tree for this code. All of the terminal and non-terminals
are represented with normal text, and the gray dashed lines show the structure of the tree.
Some of the nodes in the tree have lists of transformation objects, which are represented
with bold text and red arrows. Spirit produces the parse tree, which Cellgen traverses during
semantic analysis. During this phase, Cellgen adds transformation objects to generate code
based on reference analysis, access analysis, buffer substitution, choosing the buffer size, and
other infrastructure requirements.

While the original text of a node is never directly changed, the tree itself is changed in two
circumstances. First, the transformation that converts a shared variable access to a buffer
access subsumes all of the nodes in the tree below it. Consequently, Cellgen removes those
nodes from the tree. Second, Cellgen duplicates the main computation of the tree. Cellgen
transforms the first instance of the main computation to operate on buffer-size multiples.
The second instance operates on the remaining data.

Computation duplication is possible because of the transformers. The transformer objects
are duplicated along with the rest of the sub-tree, but like Hox genes that inform a cell of its
location in an organism during embryonic development, transformers are told where in the
parse tree they are. Some transformers generate different code depending on their location.
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If Cellgen modified the text in the parse tree directly, duplicating the tree and getting the
correct behavior would be significantly more difficult.

cell_region

compound

{ declaration for_loop }

int identifier: i ; for ( expression_statement expression_statement unary_expression ) compound compound

assignment_expression ;

identifier: i = int constant dec: 0

relational_expression ;

identifier: i < identifier: N ;

{ expression_statement } { expression_statement }

assignment_expression ; assignment_expression ;

identifier: s += postfix_expression identifier: s += postfix_expression

def_var(prev)

def_var(__i__)

compute_bounds

def_clipped_range max_buffer_size buffer_allocation def_buffer def_next def_rem def_ful def_reduction

gen_in_first_row<row_access>

reset_rem

reset_ful

variable_name variable_name naked_string

gen_in<row_access> buffer_loop_start buffer_loop_stop gen_in<row_access> buffer_loop_start buffer_loop_stop

if_clause

reduction_assign

buffer_deallocation

to_buffer_space to_buffer_space

loop_increment

Figure A.1: Augmented parse tree of the example code.

Applying the transformation objects in order at each node results in the following SPE code:

// define_var(prev)
int prev = 0;

// define_var(__i__)
int __i__ = 0;

// compute_bounds
compute_bounds(&SPE_start, &SPE_stop, sizeof(int));
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// def_clipped_range
int __N__ = min((SPE_stop − SPE_start), 16384 / sizeof(int));

// max_buffer_size
const int n_buf_sz = (__N__ / 3) − ((__N__ / 3) % 16);

// buffer_allocation
int ∗n_buf = _malloc_align(sizeof(int) ∗ 2 ∗ n_buf_sz, 7);

// def_buffer
int ∗n;
n = n_buf;

// def_next
int n_nxt = 0;

// def_rem
int n_rem;

// def_ful
int n_ful;

// def_reduction
int s = ∗s_red;

int i;

// get_in_first<row_access>
DMA_get(n_buf + n_buf_sz ∗ n_nxt, (unsigned long) (n_adr + (SPE_start)),

sizeof(int) ∗ n_buf_sz, n_nxt);

// reset_rem
n_rem = ((SPE_stop − SPE_start) % (n_buf_sz));

// reset_ful
n_ful = SPE_stop − n_rem;

// variable_name, variable_name, naked_string, loop_increment
for (i = SPE_start; i < n_ful; i += n_buf_sz) {
// gen_in<row_access>
prev = n_nxt;
n_nxt = (n_nxt + 1) % 2;
DMA_wait(n_nxt, fn_id);
DMA_get(n_buf + n_buf_sz ∗ n_nxt, (unsigned long) (n_adr + i + n_buf_sz),



114

sizeof(int) ∗ (i + n_buf_sz < n_ful ? n_buf_sz : n_rem), n_nxt);
n = n_buf + n_buf_sz ∗ prev;
DMA_wait(prev, fn_id);

// buffer_loop_start, buffer_loop_stop
for (__i__ = 0; __i__ < n_buf_sz; ++__i__) {
// to_buffer_space
s += n[__i__];

}
}
if (n_rem) {
// gen_in_row<access>
n = n_buf + n_buf_sz ∗ n_nxt;
DMA_wait(n_nxt, fn_id);

// buffer_loop_start, buffer_loop_stop
for (__i__ = 0; __i__ < n_rem; ++__i__) {
// to_buffer_space
s += n[__i__];

}
}

// buffer_deallocation
_free_align(n_buf);

// reduction_assign
∗s_red = s;

A.6 Runtime System

Much of the generated code are calls into the runtime system. The runtime system is a heavily
modified version of the runtime system initially presented by Blagojevic et al. [19] and an
initial version of CellStrider presented by Yeom et al. [104]. This runtime system allows
for a looser coupling between the compiler and the actual code executed at runtime. For
example, Cellgen will generate calls to dma_get. If there is an issue with the implementation
of DMAing memory into the SPEs, it can be fixed without modifying the compiler source
itself.
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