SPL: An Extensible Language for Distributed Stream Processing

MABT|N H|RZEL and SCOTT SCHNEIDER, IBM Thomas J. Watson Research Center
BUGRA GEDIK, Bilkent University

Big data is revolutionizing how all sectors of our economy do business, including telecommunication, trans-
portation, medical, and finance. Big data comes in two flavors: data at rest and data in motion. Processing
data in motion is stream processing. Stream processing for big data analytics often requires scale that
can only be delivered by a distributed system, exploiting parallelism on many hosts and many cores. One
such distributed stream processing system is IBM Streams. Early customer experience with IBM Streams
uncovered that another core requirement is extensibility, since customers want to build high-performance
domain-specific operators for use in their streaming applications. Based on these two core requirements of
distribution and extensibility, we designed and implemented the Streams Processing Language (SPL). This
article describes SPL with an emphasis on the language design, distributed runtime, and extensibility mech-
anism. SPL is now the gateway for the IBM Streams platform, used by our customers for stream processing
in a broad range of application domains.

CCS Concepts: ® Software and its engineering — Data flow languages;
Additional Key Words and Phrases: Stream processing

ACM Reference Format:

Martin Hirzel, Scott Schneider, and Bugra Gedik. 2017. SPL: An extensible language for distributed stream
processing. ACM Trans. Program. Lang. Syst. 39, 1, Article 5 (March 2017), 39 pages.

DOL: http://dx.doi.org/10.1145/3039207

1. INTRODUCTION

The problem statement for this article is to design a streaming language for big data.
The characteristic features of big data are commonly known as the three Vs: volume,
velocity, and variety. Handling data at high volume requires a cluster of machines to
exploit compute and storage beyond that of a shared-memory multi-core. The velocity
requirement is central to streaming, where data must be processed at high throughput
and low latency. Data come in a variety of structured and unstructured formats, creating
a demand for streaming operators that parse and convert data on the fly. This article
explores programming language techniques for addressing these three Vs.

The database community has addressed streaming by extending the Structured
Query Language (SQL), e.g., to obtain the Continous Query Language (CQL) [Arasu et
al. 2006]. SQL-based streaming languages have tidy semantics but focus on classic re-
lational operators. We argue that properly addressing variety requires a language that
is extensible with arbitrary operators. Where the programming languages community
has dealt with streaming, it focused mostly on synchronous dataflow (SDF [Lee and
Messerschmitt 1987], e.g., StreamlIt [Gordon et al. 2006]). While SDF offers attractive

Authors’ addresses: M. Hirzel and S. Schneider, IBM Thomas J. Watson Research Center, 1101 Kitchawan
Road, Yorktown Heights, NY 10598; emails: {hirzel, scott.a.s}@us.ibm.com; B. Gedik, Computer Engineering
Department, Bilkent University, Ankara 06800, Turkey; email: bgedik@cs.bilkent.edu.tr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2017 ACM 0164-0925/2017/03-ART5 $15.00

DOI: http://dx.doi.org/10.1145/3039207

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

http://dx.doi.org/10.1145/3039207
http://dx.doi.org/10.1145/3039207

5:2 M. Hirzel et al.

static guarantees, those come with restrictions on dynamism and topology. Most im-
portantly, SDF interacts poorly with native code in a non-streaming language. Native
code is central to the variety requirement. Hence, some recent streaming systems use
libraries instead of languages to implement their programming model [Zaharia et al.
2013; Toshniwal et al. 2014].

This article describes the Streams Processing Language (SPL). SPL supports distri-
bution on a cluster and extension with new operators. It serves as the programming
language for IBM Streams, a commercial distributed stream processing platform. An
earlier language for IBM Streams was SPADE, which centered around built-in relational
operators with limited support for user-defined operators [Gedik et al. 2008]; in con-
trast, SPL offers a general code-generation framework for all operators. An earlier arti-
cle about SPL offered a high-level overview [Hirzel et al. 2013]; in contrast, this article
presents the full language design, along with case studies and the details on extensi-
bility. The language specification is published as a technical report [Hirzel et al. 2009].

To facilitate distribution, SPL operators communicate only via streams. The language
avoids shared state or even any centralized execution scheduling. The source code
offers a logical abstraction that hides distribution, and the runtime is in charge of
mapping from this logical level to the distributed hardware at hand. This mapping
offers many optimization opportunities, which users can influence if they so wish, or
the system can automatically optimize. The SPL source code describes the stream graph
and configures operators declaratively. The extension mechanism allows developers to
define new operators that offer a declarative interface at the SPL language level but
use code-generation templates for native code at the implementation level. An operator
model specifies an interface and properties that enable the SPL compiler to do static
checking and optimization in the presence of generated native code.

This article describes the following novel features that set SPL apart:

—Language-level graph abstractions and restrictions on data and control dependencies
that facilitate distribution.

—A uniform high-level declarative syntax for all operator invocations, including those
of user-defined operators.

—An extension mechanism, where operators are mini-compilers generating customized
native code.

SPL has had success both commercially and academically. Commercially, SPL is used
by customers for a wide variety of application domains [Biem et al. 2010a, 2010b;
Bouillet et al. 2012; Kienzler et al. 2012; Park et al. 2012; Sow et al. 2012; LogMon
2014; Zou et al. 2011]. Academically, several articles are based on new stream process-
ing techniques that were first prototyped on a research branch of the SPL compiler
[De Pauw et al. 2010; Gedik et al. 2008, 2014; Hirzel 2012; Hirzel and Gedik 2012;
Khandekar et al. 2009; Mendell et al. 2012; Schneider et al. 2012; Tang and Gedik
2013]. While those articles describe facets of SPL in isolation, this article describes the
language in its entirety.

2. LANGUAGE OVERVIEW

This section explains language features and provides the rationale for the more sur-
prising design choices.

2.1. Stream Graphs

Stream graphs as a programming model are both easy to understand for users and
lend themselves to a parallel and distributed implementation. SPL encourages pro-
grammers to think of their applications as graphs by dedicating syntax to this concept.

Figure 1 shows an example stream graph alongside the corresponding SPL code.
Each edge is a stream (a conceptually infinite sequence of data items), and each vertex

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

SPL: An Extensible Language for Distributed Stream Processing 5:3

1 composite Main {
2 type Patient = tuple<uint64 uid, rstring name,
3 uint32 code, rstring dept>;
4 graph
5 stream<uint64 uid> SrcO = TCPSource() {
6 param role: client; address: "1.2.3.0";
7 }
8 stream<uint64 uid> Srcl = TCPSource() {
9 param role: client; address: "1.2.3.1";
10 }
11 stream<Src0> Ids = Switch(Src0,Srcl; Ctrl) {
12 param status: true;
13 }
14 stream<Patient> Profiles = DBSource() {
15 param query: "SELECT * FROM patients";
16
17 (stream<Patient> Enriched;
18 stream<boolean ready> Ctrl) =
19 ProfileEnricher(Ids; Profiles) {}
20 () as Snk = TCPSink(Enriched) {
21 param role: server; port: "http";
22 }
23)

Fig. 1. Stream graph with streams, operator instances, and ports.

is an operator instance. The program enriches streams of patient identifiers from two
Transmission Control Protocol (TCP) sources with patient profiles from a database
source and sends the resulting stream to a TCP sink. Enrichment here simply means
a joining of data in motion (Ids) with data at rest (Profiles). One tweak is that the
Ctrl stream from ProfileEnricher back to Switch delays the Ids while the Profiles
are being initialized.

The same operator can be instantiated multiple times in the same stream graph
(e.g., there are two instances of TCPSource). Operator instances are named by output
streams or by using an as id clause (e.g., Snk).

The point where a stream connects to an operator is a port. Operators can have zero,
one, or multiple input and output ports. Multiple streams can arrive on the same input
port (e.g., both Src0 and Src1 arrive on the same input port of the Switch instance),
which merges them in arrival order. Syntactically, SPL separates ports by semicolons
and streams converging on the same port by commas. A stream from an output port
can be used multiple times, yielding copies of the same sequence of data items.

When a data item arrives at an input port, the corresponding operator instance
fires. Since firings have no central schedule, they maximize concurrency and minimize
distributed coordination. Most operators are passive between firings, but there are
also self-activating operators, including sources (operators without input ports). When
an operator instance fires, it consumes the data item that triggered the firing, and
produces zero or more data items on output ports. Selectivity is the number of output
data items per input data item. Selectivity is often dynamic and unknowable for the
compiler. For example, many SPL applications use data-dependent filtering, parsing,
or time-based aggregation.

SPL operators can be stateful, remembering information between firings. While most
SPL applications have some stateful operator instances, many operators are stateless.
In contrast to operator-local state, SPL offers no features for sharing state between
operators. This omission facilitates distribution and avoids race conditions or deadlocks
from shared state.

There are alternatives to SPL's execution model of firing operators each time a data
item arrives on any input port. Operators in Kahn networks wait on a specific port,
whereas SPL operators wait on all ports [Kahn 1974]. In synchronous dataflow, one
firing can consume multiple data items [Lee and Messerschmitt 1987]. In CQL (an

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

5:4 M. Hirzel et al.

SQL dialect for streaming), each firing consumes one data item per input port [Arasu
et al. 2006]. SPL’s execution model is general in that operator developers can emulate
any of the other models by a combination of state and blocking.

2.2. Streams

All inter-operator communication happens via streams. As mentioned earlier, a stream
is a sequence of data items. A data item is either a tuple or a punctuation. A tuple is a
value of a tuple type, which has named attributes, similar to a C struct, a Pascal record,
or a database row (but potentially nested). For example, stream Profiles in Figure 1
carries tuples of type Patient. A punctuation is a control signal marking a position
in a stream. Streams are ordered, and window punctuations are commonly used by
programmers to group subsequences of tuples into a window. Final punctuations signal
that the job is about to shut down.

As seen in Figure 1, each output port of an operator instance defines a stream, which
can then feed into input ports of other operator instances. To address the full variety
of application requirements, SPL poses no restrictions on the resulting topology. SPL
allows multiple sources (e.g., primary input vs. control input), multiple sinks (e.g.,
primary output vs. log data), and even cycles (e.g., to send back control messages).
To help avoid potential problems with cycles, SPL provides control ports: An operator
firing on a control port is not supposed to submit output data items. The compiler warns
when a cycle does not include a control port.

The snapshot of a stream graph edge at a given point in time can be viewed as a
first-in first-out buffer of in-transit data items. SPL does not specify how this buffer
is implemented, or how much time each data item spends in it, except that order is
preserved. This enables a flexible placement of operator instances on threads, processes,
and hosts: In the general case, SPL runs on a distributed system without centralized
scheduling. Downstream operators indirectly throttle the processing rate of upstream
operators via back-pressure.

The SPL compiler does not statically know bounds on buffer sizes. The SPL runtime
does impose a fixed capacity on buffers, and when buffers fill up, they exert back-
pressure. Execution models where an operator is picky about which input port to
receive data from, while blocking other ports even if they have data available, can
cause deadlocks [Li et al. 2010]. In SPLs execution model, operators fire when data
is available on any port. Therefore, in SPL, deadlocks can only happen when users
emulate other execution models via blocking operators whose firings can block for an
indeterminate amount of time [Xu et al. 2013]. This is rarely a problem in practice and
can be resolved using SPL’s interactive debugger [De Pauw et al. 2010].

2.3. Operator Invocations

An operator is a reusable and configurable stream transformer. An operator invocation
is the source code that configures an operator to yield an operator instance in the
stream graph. Operator invocations have five optional clauses: logic, window, param,
output, and config. The first four of these clauses affect operator semantics; this
section offers examples and explanations for them. The last clause, config, contains
non-functional directives to the compiler or runtime system to influence optimization
decisions or debugging support. The available directives are implementation specific;
Section 3 contains example config clauses. It depends on the operator which clauses
are required and what kind of configuration they permit. The SPL compiler checks the
correctness of an operator invocation by consulting the corresponding operator model.

Example 1. Figure 2 is an example application that reads stock bids from an external
source, computes aggregate statistics for those bids, and streams those statistics to

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

SPL: An Extensible Language for Distributed Stream Processing 5:5

1 composite Main {

2 type Bid = tuple<float64 price, float64 volume, rstring bidder,
3 rstring ticker, timestamp ts>;

4 type BidStat = tuple<float64 totalBids, rstring maxBidder>;
5 graph

6 stream<Bid> Bids = StockSource() {}

6 stream<BidStat> BidStats = Custom(Bids) {

7 logic state: {

8 mutable BidStat stats = { totalBids = 0.0, maxBidder = "" };
9 mutable float64 maxBid = 0.0;

10 }

11 onTuple Bids: {

12 float64 currBid = price * volume;

13 stats.totalBids += currBid;

14 if (currBid >= maxBid) {

15 maxBid = currBid;

16 stats.maxBidder = bidder;

17 }

18 submit(stats, BidStats);

19 }
20 }
21 () as Sink = ReportBidStats(BidStats) {}
22}

Fig. 2. Maintaining and producing lifetime aggregate statistics.

an external sink. We focus on the framed operator invocation, which performs the
aggregation. Line 6 is the operator invocation head, declaring the output stream type
(BidStat) and name (BidStats), the operator to be invoked (Custom), and the stream
in the input port (Bids). The operator invocation contains a logic clause with two
subclauses. The state subclause defines variables that are locally scoped to the operator
invocation and whose lifetime is that of the entire application. The onTuple subclause
defines code to be executed for each tuple arriving on the specified input port. In
this case, it incrementally updates the aggregate statistics and submits them to the
output port BidStats. While many SPL operators support the logic clause, it is most
commonly used on Custom. The Custom operator is special in that it allows programmers
to directly call submit from within its logic clause. Calls to submit send data items to
the specified output port. While most operators implement core functionality in C++
or Java, Custom is a blank slate for writing logic directly in SPL. The logic clause also
supports an onPunct subclause for specifying code to execute on receiving a punctuation
on an input port.

Example 2. The Custom operator is convenient for defining specific logic in-place,
and in practice, real SPL applications contain many invocations of the Custom oper-
ator. However, the reusability and customizability of such invocations is limited. For
example, Figure 2 aggregates over all tuples on a stream during the entire application
lifetime. Such unbounded aggregations are rare in practice. More common are aggre-
gations over a particular window of tuples. In fact, computing some kind of aggregation
over a particular window of tuples is so common in streaming applications that SPL's
standard library defines the Aggregate operator for this purpose. Figure 3 shows an
example invocation of the Aggregate operator, which could replace the framed portion
of Figure 2.

The Aggregate invocation in Figure 3 shows three additional operator clauses: win-
dow, param, and output. The Aggregate operator definition is a generic aggregation
template, and the configurations in the clauses specialize the invocation for specific
behavior.

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

5:6 M. Hirzel et al.

stream<BidStat> BidStats = Aggregate(Bids) {
window Bids: tumbling, time(3), partitioned;
param partitionBy: ticker;
output BidStats: totalBids = Sum(price * volume),
maxBidder = ArgMax(price * volume, bidder);

ST WN

Fig. 3. Maintaining and producing 3s aggregate statistics per ticker.

1 stream<rstring bidder, rstring seller, rstring ticker> Sales = Join(Bids; Asks) {
2 window Bids: sliding, delta(ts, 30.0), count(1);

3 param match: Bids.ticker == Asks.ticker && Bids.price >= Asks.price;

4 output Sales: ticker = Bids.ticker;

5

}
Fig. 4. Correlating bids and asks to find sale opportunities.

The window clause in Figure 3 specifies that the contents of the window should
tumble every 3s and that the window is partitioned. In general, the window clause
declares an operator-instance local FIFO buffer of tuples that recently arrived on an
input port. Streams are conceptually infinite, but practical programs work on bounded
space. Therefore, most streaming languages offer windows, as they are an intuitive
way to bound required data [Arasu et al. 2006; Gordon et al. 2006; Zaharia et al. 2013].
A tumbling window clears out its contents between firings. A sliding window evicts
only a subset of its contents, making room for new tuples but retaining some old ones.
Windows that are partitioned maintain separate buffers and firings for each distinct
value of user-specified key attributes.

The param clause in Figure 3 contains the partitionBy parameter, which specifies
the window partitioning key as the ticker attribute. In general, the param clause
configures operator-specific parameters. Configuring the param clause is the primary
way for programmers to specialize an operator’s behavior on an invocation.

The output clause in Figure 3 specifies how to assign values to an output tuple’s
attributes. Operator definitions determine when to submit new tuples based on the
semantics of their operation; for instance, Aggregate submits an output tuple for every
aggregation result. The output clause can exist on each output port, and it is how
programmers who invoke that operator specialize the resulting tuple. When there is
no explicit assignment for an output attribute, the compiler inserts an assignment
copying a corresponding input attribute if the name matches unambiguously and has
the same type. The output clause in Figure 3 also uses two operator-specific intrinsic
functions, Sum and ArgMax, which produce the total and the bidder with the highest
bid. While calls to operator-specific intrinsics look like ordinary function calls, the
operator code generator does not have to implement them that way. For instance,
the Aggregate operator implements tumbling-window aggregation incrementally, as
opposed to computing the aggregate result in bulk by looping over the window contents.

Example 3. Figure 4 shows an operator invocation that determines when to make
a sale based on joining bids and asks. While the invocation in Figure 4 contains the
same clauses as the invocation in Figure 3, they configure the different semantics
of a different operator. Line 1 defines the output stream Sales by invoking the Join
operator, which receives two input streams, Bids and Asks. The operator instance
maintains a window over the Bids stream. Figure 5 illustrates the semantics. Each
time the operator instance receives an Asks tuple, it compares it against each tuple
currently in the Bids window by executing the match predicate. For each successful
match, the operator instance assigns attributes of the output tuple using the output

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

SPL: An Extensible Language for Distributed Stream Processing 5.7
Streaming Join operator Windowing
platform instance (C++) library

[have logic?] execute logic

process(tuple, port)

| | insert tuple in receiving port's window

|
|
(

retrieve tuples from other port’s window l

;l execute param match

for each tuple in other

port's window loop — ;l [match succeeded?] execute output

[match succeeded?] submit tuple

| |
=y

[
i |

Fig. 5. Clause execution interplay during a Join operator firing.

clause, forwards values from the input tuple to the output tuple for matching attributes
that were unmentioned in the output clause, and submits the output tuple.

The window clause in Figure 4 is over only one of the input ports, Bids. Unlike the
Aggregate invocation in Figure 3, the Join invocation in Figure 4 has multiple input
ports. Figure 4 uses a sliding window of tuples whose ts attribute differs by no more
than 30 (delta(ts, 30.0)), with a sliding granularity of a single tuple (count (1)).
Windows make data from one port available during firings on another port, as seen in
the interaction between the window clause and the match predicate. Such interaction
is necessary for implementing any joinlike operation with windows. SPL’s execution
model fires operators when a new data item arrives on any particular input port, and
correlating data across input ports may require looking at a different port’s window.

The paranm clause in Figure 4 passes an expression to the predicate match. The expres-
sion for match gets re-executed (possibly multiple times) during each firing to compare
the new tuple against tuples in the window. SPL supports different parameter passing
modes. In general, the operator implementation determines whether and when such
expression parameters execute (in contrast to logic clauses, which always execute at
the start of a firing). Besides expression parameters, operators can also declare pa-
rameters that are only evaluated once before the application runs. For example, Line 6
in Figure 1 uses constant values for role and address. In Figure 3, the parameter
partitionBy accepts a list of tuple attributes to use as keys; the parameter has no
concept of executing. The operator model specifies parameter names, types, modes, and
multiplicities.

Discussion. The Aggregate operator invocation in Figure 3 uses the same clauses
as the Join operator invocation in Figure 4. However, despite using the same clauses,
they are able to configure different operations in non-trivial ways. The interfaces to
both operators are essentially embedded domain-specific languages, in the sense that
they borrow host language syntax and types [Hudak 1998]. They implement different
semantics for streaming aggregations and streaming joins, respectively. The design of

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

5:8 M. Hirzel et al.

SPL’s operator invocation syntax and clause structure accomplishes two goals. First, it
is uniform across operators: Once a user has mastered it, they know how to invoke any
operator. Second, it serves as the foundation of SPL’s extensibility: Operators use code
generation to specialize their code to the declarative operator configuration.

2.4. Conventional Language Features

While SPL uses new syntax for streams and operators, it borrows syntax from conven-
tional languages for concepts such as expressions, functions, and variable declarations.
Here, by conventional, we mean not specific to streaming. SPL reuses features from
C and Java (syntax style), SQL (tuples), Python (built-in lists and maps), ML (para-
metric polymorphism), and others, making it more familiar and thus easier to learn.
This reuse also leverages established practices and hard-earned lessons in areas where
SPL does not intend to innovate. At the same time, there were frequently many design
choices to pick from, and the streaming context informed those decisions.

To address the variety of streaming in big data, besides the usual primitive types
(numbers, strings, Booleans, etc.), SPL offers four generic type constructors: tuple, list,
map, and set. Streams carry tuples, but tuple types can also be used like any other
type for variables, parameters, function return values, or even attributes of other tuple
types. Lists, maps, and sets are homogeneous collections. Lists are dynamic arrays
indexed by integers; maps support efficient associative lookup and are indexed by any
key type; and sets are unordered collections without duplicates. In stream processing,
establishing the exact size of data items can speed up serialization and transport.
Therefore, SPL offers pre-allocated bounded variants of its variable-sized string and
collection types; for example, 1ist<int32> [4] is the type for lists of up to four int32s.

SPL is strongly and statically typed to catch as many errors as possible at compile
time and avoid dynamic dispatch overheads. On the other hand, SPL's type constructors
make working with types easy. SPL provides literal syntax for values of each type
constructor that is inspired by JavaScript Object Notation (JSON). SPL uses structural
equivalence, because types are often written in-place (e.g., Line 1 of Figure 4).

A stream type is parameterized with a tuple body. There are two ways to specify a
tuple body. One is by a sequence of attributes. For instance, stream<float64 val, P2
loc> Sdefines a stream S, where each tuple in the stream contains two attributes, val
and loc. If P2 is itself a tuple type, such as tuple<int32 x, int32 y>, then this leads
to nested tuples. The other way to specify a tuple body is by a sequence of tuple types,
where the combined type has all attributes of the individual types, which must be
unique. For instance, stream<P2, tuple<int32 z>> P3s defines a stream P3s with
all the attributes of P2 and an additional attribute z. Note that this is not nesting
but type construction via concatenation. Finally, as a shorthand, SPL allows a stream
name to refer to its tuple type.

SPL does not offer any pointer types, and, as a consequence, no recursive or cyclic
types. This design decision has several advantages: There are no null-pointer errors;
all values are easy to serialize for transport on streams; SPL offers simple automatic
memory management without requiring full-fledged garbage collection; and there is no
aliasing, making it easier to curb side effects.

Variables, expressions, statements, and functions in SPL will look familiar to any-
one used to C-inspired languages. However, variables and parameters in SPL are
immutable by default unless declared with an explicit mutable modifier. An immutable
variable or parameter is deep-constant. Functions in SPL are stateless by default un-
less declared with an explicit stateful modifier. A stateless function cannot read or
write non-local data except for its mutable parameters, if any. A simple interproce-
dural analysis in the SPL compiler checks mutability and statefulness. All function
parameters are passed by reference. Note that this only affects semantics for mutable

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

SPL: An Extensible Language for Distributed Stream Processing 5:9

composite GenericEnricher(output Enriched; input In, External) {
param operator $Enricher;
type $FullData;
graph
stream<In> Simple = Switch(In; Ctrl) {
param status: true;
}
(stream<$FullData> Enriched; stream<boolean ready> Ctrl)
= $Enricher(Simple; External) {}

Ctrl

—— e —— -

OO0 UTHK WN -

=

Fig. 6. Composite operator definition.

parameters. The compiler checks that actuals passed to mutable formals are never
aliased.

Taken together, the omission of pointer types, the explicit mutability and stateful-
ness declarations, and the prohibition of aliased mutable parameters make it easy to
statically pin-point expression side effects. This is useful both for error prevention and
for optimization. For example, the SPL compiler statically checks that state written
by a statement is not read anywhere elsewhere in the same statement. This prevents
statements such as return (x++)/f(x); that depend on expression evaluation order.

For programming in the large, SPL provides namespaces and toolkits. An SPL name-
space acts similarly to a C++ namespace or a Java package. A toolkit is a separate root
directory in the library lookup path, similarly to a classpath component in Java.

2.5. Composite Operators

SPL users think in terms of stream graphs, and doing so is a simple mental model
as long as applications do not get too large. Composite operators make stream graphs
manageable at scale. A composite operator encapsulates a stream subgraph. The SPL
compiler macro-expands composite operator invocations until only a flat graph remains.
The vertices of that flat graph are primitive operator instances. Primitive operators are
the subject of Section 4. Composite operators make it possible to reuse subgraphs and
offer graph-level modularity. The syntax for invoking composite and primitive operators
is the same, except that composite operator invocations never carry logic, window, or
output clauses.

Figure 6 shows an example definition of a composite operator. Composite Generic-
Enricher declares output port Enriched, input ports In and External, formal parame-
ters $Enricher and $FullData, and a graph clause that uses the ports and parameters.
When the SPL compiler encounters an invocation of GenericEnricher, it checks that
the number of ports and the parameter names and kinds match. Then, it replaces the
invocation by a copy of the subgraph, while substituting the appropriate actual streams
and parameters. This expansion is Aygienic in the sense of avoiding accidental name
capture.

Unlike other streaming languages, SPL supports higher-order composites; for exam-
ple, composite GenericEnricher in Figure 6 takes another operator, $Enricher, as a
parameter. Composites can also accept types (such as $FullData in Figure 6), values,
expressions, or functions as parameters. This broad set of parameters works in concert
with automatic attribute forwarding to enable writing highly generic operators. Com-
posite operators can even be entirely structural; a composite operator that only invokes
operator parameters defines the structure of a stream graph but makes no assumptions
about the operators themselves. This amount of genericity increases opportunities for
subgraph reuse and modularity.

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

[
o
o

M. Hirzel et al.

param properties = {service = "mail",

filter: severity > 2; kind = "app"};

}
() as Sink = LogProcessor(Logs) {}

=

}

1 type LogData = tuple<rstring service, 1 stream<LogData> Logins = LoginsProducer() {}
2 uint32 severity, 2 () as LoginsExp = Export(Logins) {
3 rstring data>; 3 param properties = {service = "login",
4 4 kind = "system"};
5 stream<LogData> Logs = Import() { 5 ¥
6 param subscription: service == "mail" || 6 stream<LogData> Mail = MailProducer() {}
7 kind == "system"; 7 () as MailExp = Export(Mail) {
8 8
9 9

0
0

—

Fig. 7. Importer application. Fig. 8. Exporter application.

2.6. Dynamic Application Composition

The shape of an application graph is static: The edges and vertices do not change
at runtime. However, users can obtain more dynamic graphs by taking advantage of
the fact that IBM Streams is multi-tenant: An IBM Streams instance hosts multiple
applications at the same time. SPL provides a feature for cross-application stream
edges, called dynamic connections. An application that exports a stream tags it with
publication attributes (name-value pairs). An application that imports a stream
specifies it with a subscription predicate over publication attributes. The runtime
dynamically adds or removes the corresponding edges when applications start or stop.

Figures 7 and 8 list the SPL code for an example scenario illustrating the use of
dynamic application composition features of SPL. There is an importing application
(Figure 7) interested in log streams with specific features and an exporting application
(Figure 8) that produces log streams of potential interest for the importing application.
In particular, the importing appliction is subscribed to streams that are exported with
a service property of value “mail” or a kind property of value “system”. Furthermore, it
specifies that the contents of the subscribed streams are to be filtered, remotely, using
the predicate severity > 2. The exporting application is publishing two streams, one
with properties service and kind of values “login” and “system”, respectively, and
another with the same properties but values “mail” and “app”. Both of the exported
streams match the subscription of the importer application from Figure 7. In practice,
there could be additional importer and exporter applications, which could come and
go dynamically. The SPL runtime is responsible for establishing and severing the
connections as needed.

2.7. Putting it All Together

As we have seen, SPL provides syntax for defining graphs of streams and operators,
while also offering conventional language features such as types, expressions, and func-
tions. The SPL compiler creates an application containing the stream graph obtained
by expanding a main composite operator.

In language design, it is not just important to add certain features but also to omit
others. Besides shared state, pointers, and parameter aliasing, another omitted feature
worth mentioning is object orientation. SPL strictly separates state from behavior.
State and values are passive, as befitting data items on a stream. Behavior resides in
operators and functions. This keeps the language simpler.

For a full sample SPL application, see Appendix A.

3. SYSTEMS OVERVIEW

While programmers writing SPL mostly reason about operators, the primary unit from
a systems perspective is the processing element (PE). A PE corresponds to an operating
system process, and PEs contain one or more operators. PEs have input and output
ports that are distinct from operator input and output ports. Each PE input port

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

SPL: An Extensible Language for Distributed Stream Processing 5:11

receives tuples from other PEs and sends them to operator input ports inside itself,
and each PE output port receives tuples from operator output ports inside itself and
sends them to other PEs.

An SPL application in execution comprises one or more PEs, where each PE com-
prises one or more operators. An IBM Streams instance contains the runtime services
for launching, running, and coordinating SPL applications. Distinguishing between the
fundamental computational unit in the programming model (operators) and the funda-
mental system vehicle for execution (PEs) provides flexibility in how applications can
be executed and a high-level abstraction of a parallel, distributed system.

3.1. Application Life Cycle

The compiler produces two sets of artifacts for the runtime system: the compiled bina-
ries for the PEs and the Application Description Language file (ADL). The lifecycle of
an application starts when a user submits its ADL to the IBM Streams instance.

The ADL contains a logical view of the application, which includes information on
all operators, PEs, types, and post-compilation transformations. The post-compilation
transformations are applied at submission time and produce the Physical ADL (PADL).
Which operators are in which PEs, and how many input and output ports each operator
has, is fixed at compile time. However, PE input and output ports, and the connections
between operators inside of a PE, are entirely driven by the PADL. This distinction
between the logical view of the application (ADL) and the physical view of the applica-
tion (PADL) allows submission-time flexibility. The runtime system is free to transform
applications based on submission-time information. We discuss one of these transfor-
mations, fission, in Section 3.2.4.

After submission and initial setup, the SPL application is in execution. Unlike con-
ventional applications, streaming applications are intended to remain running indefi-
nitely. Even if an SPL application is not currently processing data, it is always waiting
and ready for more data to arrive. Hence, users must issue a request to the IBM
Streams instance if they want an SPL application to stop executing.

3.2. User-Controlled Placement

The power of language abstractions such as operators and streams is that they enable
a separation of application logic from system configuration. SPL provides the following
system configuration controls, which are orthogonal to the logic of an application:

Operator Placement. Users can direct fusion—how operators are combined into
PEs—with the partitionColocation, partitionExlocation, and partitionIsolation
configurations.

Thread Placement. Users can introduce new threads with the threadedPort
configuration.

Host Placement. Users can influence the mapping from PEs to hosts with the host,
hostColocation, hostExlocation, and hostIsolation configurations.

Fission. Users can request fission—replicating subgraphs to exploit data
parallelism—with the @parallel annotation.

3.2.1. Operator Placement. SPL. abstracts operator communication as consuming data
items from input streams and emitting data items on output streams. The runtime im-
plements these abstractions as either function calls or sending data over the network.

Operators in the same PE communicate via function calls: The sending operator’s
data-item submission calls a function associated with the input port of the receiving
operator. In this case, no serialization occurs. In fact, depending on tuple mutation and

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 1, Article 5, Publication date: March 2017.

5:12 M. Hirzel et al.

Fig. 9. Threads in a PE. This PE has three threads: in the source operator A, a threaded port on operator C,
and in the PE input port.

graph topology, operators may communicate by simply passing a reference. If not, then
the runtime creates a copy and calls the submission function with that copy.
