Optimal and General Out-of-Order
Sliding Window Aggregation

Kanat Tangwongsan®, Martin Hirzel*, Scott Schneider*

#*Mahidol University International College
*IBM T. J. Watson Research Center

Windows on data streams

infinite stream of data

processing such infinite streams of data
requires defining a window on it

back front

Sliding windows

as new data arrives...

... it is inserted in the back...

SN—

... oldest data is evicted

... existing data slides down...

Real data tends to have timestamps

/dataitem
/8] -
/

timestamp ordering the data '

Z/5

A query on the window is an aggregation

Problem statement

* We want a data structure for a sliding window that can:

* insert data items with timestamps that are out-of-order by
distance d in amortized O(log d), reducing to O(1) when d=0

* evict data items based on timestamps in amortized Oflog d),
reducing to O(1) when d=0

e query the aggregations on the window in worst-case O(1)
* How?
e B-Trees! (heavily modified)

FIBA: Finger B-Tree Aggregator

start with a B-Tree modified with aggregates:

timestamps ab.u € aggregates
7 | 15
g | o
ab..f hi..n gstu
3 | 5 9 | 12 20 |®
cC | e | I t
ab d f h JK mn gs u
1 2 4 1° 6 [*f 8 |°| 10 | 11 13 | 14 17 | 19 21 |°®
a | b d f h j K m | n q | S u

L values —/T

FIBA: Finger B-Tree Aggregator

add fingers:

left right
ab..u
7 | 15
g | o
hi..n gstu
9 | 12 20
i I t
f h jK mn gs u
§) 8 10 | 11 13 | 14 17 | 19 21
f h] K m | n q | S u

FIBA: Finger B-Tree Aggregator

define position-aware aggregates:

gh.o |e— inner: for root only, everything below
except left and right spines

7 15
g o)
left: for left spine, right: for right spine,
everything to the right everything to the left
and above hi..n gst and above
9 12 20
| I t
d f h jk mn gs gstu
° 6 [* 8 [*| 10 11 13 14 17 19 21 |®
d f h | k m n q S u

up: for middle, everything below 5

FIBA: Finger B-Tree Aggregator

answer queries by combining left finger, root and right finger:

ab..f ® gh..o @ gstu =ab..u

</4'gh..o

7 15
g 0
hi..n gst
9 12 20
[I t
d jk mn gs gstu
4 |° 6 |° ® 10 11 13 14 17 19 21
d f | k m n q S u

10

FiBA: Intuition for why it works

* Fingers allow O(1) time access to oldest and youngest
e without fingers, searching for a data item would be standard Oflog n)
* but we are dealing with a time-based window, where we are biased towards
inserting at the young end and evicting from the old end
» Specially defined aggregates shield sections of the tree
* updating a value in one section of the tree is unlikely to cause repairs to
aggregates elsewhere

* Choice of min and max arity plus lazy splitting and merging avoids
unnecessary tree rebalancing

Out-of-Order Throughput

throughput [million items/s]

N
Ul
1

N
o
1

=
Ul
1

=
o
1

921
1

-4-- Dbclassic2 -4-' bclassic8 —— bfinger4
-4-- bclassic4 —— bfinger2 —— bfinger8

000 sum, window 222

2|1 2|3 2|5 2|7 2l9 2i1 22|I.3 22|I.5 22|I.7 2:|I.9 2|21
out-of-order distance

-4~ bclassic2 -4-- bclassic8 —— bfinger4d
-4-- bclassic4 —— bfinger2 —— Dbfinger8

000 bloom, window 222

throughput [million items/s]

2|1 2|3 2|5 2|7 2|9 2|11 2|13 2|15 2|17 2Z|L9 2|21
out-of-order distance

12

In-Order Latency

sum, window 222, distance 0

=

o
IS
1

processor cycles
'_I
o
w
1

'—\

o
N
1

- 99.9%

= 99.9%

- 99.9%

= 99.9%

- 99.9%

-99.9

o

bclassic2 bclassic4 bclassic8 bfinger2 bfingerd bfinger8

processor cycles

bloom, window 222, distance 0

100 E

10° -

10% -

199.9%

99.9% 199'9%
- . 0

- 99.9%

- 99.9%

- 99.9

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4d bfinger8

13

In-Order Throughput

throughput [million items/s]

-4- two stacks -1- bclassic2 —— bfinger2
—— daba

--}-- reactive

-4- bclassic4 —+— bfinger4
-4- bclassic8 —— bfinger8

FIFO sum

) jl j3 25 27 Zb 211 2i3 2i5 2i7 2i9 251

window size in data items

throughput [million items/s]

-4- two_stacks -1- bclassic2 —— bfinger2
—— daba -4- bclassic4 —— bfingerd
-} reactive -1- bclassic8 —— bfinger8

FIFO bloom

21 23 23 23 zb 2i1 2i3 2i5 2i7 2i9 251
window size in data items

14

Questions?

Backup

processor cycles

Out-of-Order Latency

sum, window 222, distance 229

10° E
10° E
104 E

103 5

99.9%

= 99.9%

99.9%

99.9%

99.9%

99.9

bclassic2 bclassic4 bclassic8 bfinger2 bfingerd4 bfinger8

processor cycles

bloom, window 222, distance 220

10° -

10° -

99.9%

= 99.9% 49999 =999

99.9%
99.9%

o

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4d bfinger8

17

