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Windows on data streams

infinite stream of data

processing such infinite streams of data
requires defining a window on it

back front




Sliding windows

as new data arrives...

... it is inserted in the back...

SN—

... oldest data is evicted

... existing data slides down...



Real data tends to have timestamps
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A query on the window is an aggregation




Problem statement

* We want a data structure for a sliding window that can:

* insert data items with timestamps that are out-of-order by
distance d in amortized O(log d), reducing to O(1) when d=0

* evict data items based on timestamps in amortized Oflog d),
reducing to O(1) when d=0

e query the aggregations on the window in worst-case O(1)
* How?
e B-Trees! (heavily modified)



FIBA: Finger B-Tree Aggregator

start with a B-Tree modified with aggregates:
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FIBA: Finger B-Tree Aggregator

add fingers:
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FIBA: Finger B-Tree Aggregator

define position-aware aggregates:

gh.o |e— inner: for root only, everything below
except left and right spines
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FIBA: Finger B-Tree Aggregator

answer queries by combining left finger, root and right finger:
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FiBA: Intuition for why it works

* Fingers allow O(1) time access to oldest and youngest
e without fingers, searching for a data item would be standard Oflog n)
* but we are dealing with a time-based window, where we are biased towards
inserting at the young end and evicting from the old end
» Specially defined aggregates shield sections of the tree
* updating a value in one section of the tree is unlikely to cause repairs to
aggregates elsewhere

* Choice of min and max arity plus lazy splitting and merging avoids
unnecessary tree rebalancing



Out-of-Order Throughput

throughput [million items/s]
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-4-- Dbclassic2 -4-' bclassic8 —— bfinger4
-4-- bclassic4 —— bfinger2 —— bfinger8

000 sum, window 222
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In-Order Latency

sum, window 222, distance 0
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In-Order Throughput

throughput [million items/s]
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Questions?




Backup



processor cycles

Out-of-Order Latency

sum, window 222, distance 229
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